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a b s t r a c t

We present a model introducing the Landau–Lifshitz–Gilbert equation with a Slonczewski's Spin-
Transfer-Torque (STT) component in order to take into account spin polarized current influence on the
magnetization dynamics, which was developed as an Object Oriented MicroMagnetic Framework
extension. We implement the following computations: magnetoresistance of vertical channels is
calculated from the local spin arrangement, local current density is used to calculate the in-plane and
perpendicular STT components as well as the Oersted field, which is caused by the vertical current flow.
The model allows for an analysis of all listed components separately, therefore, the contribution of each
physical phenomenon in dynamic behavior of Magnetic Tunnel Junction (MTJ) magnetization is
discussed. The simulated switching voltage is compared with the experimental data measured in MTJ
nanopillars.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Magnetic Tunnel Junction (MTJ), consisting of two ferromag-
netic nano-layers separated by a thin insulating barrier, has
recently drawn a significant attention, due to their potential
applications such as Spin-Transfer-Torque Random Access Memory
(STT-RAM) [1], magnetic field sensors [2] and microwave oscilla-
tors [3]. The major advantage of MTJs is the possibility of the
magnetization control of one of the ferromagnetic layers – called
the Free Layer (FL) with a spin polarized current by means of the
STT effect [4,5]. Due to the STT, the applied spin polarized current
can drive the magnetization of the FL into precession, laying
typically in a microwave frequency regime [6] or, for sufficiently
high current amplitudes, it can switch the FL between Parallel
(P) and Anti-Parallel (AP) alignment with respect to the Reference
Layer (RL) [7,8]. The difference between the P and AP states can be
detected using the Tunnel Magnetoresistance (TMR) effect [9].

In order to fully understand the magnetization switching
process, micromagnetic simulations are commonly used, in order
to derive the parameters not-accessible in the experiment, or to
support the optimization of the MTJ design. In this paper we
present a model which was adopted to an extension of Object
Oriented MicroMagnetic Framework (OOMMF) [15] that allows for
accurate local current density calculation, which is crucial for the
magnetization switching dynamics. We implement the feedback

between the local magnetizations alignment, the current density and
the conductivity. Recent publications used macrospin models [11,10],
or focused on the simulations with a fixed current density or a current
pulse independent of the dynamic MTJ resistance [12–14].

2. Implemented models

In our MTJs model we assume that the current flows through
channels perpendicular to the junction plane, which are connected in
parallel. Each channel is considered as separate junction with the
resistance R, which depends on the TMR effect given by the formula:

R¼ RPþ
RAP�RP

2
ð1� cos θÞ; ð1Þ

where θ is an angle between magnetization vectors of FL and RL, RP
(for θ¼ 0) and RAP (for θ¼ 1801) are resistances of the P and AP states,
respectively. The idea of calculating local conductance is depicted in
Fig. 1(a). The detailed specification of the OOMMF settings files as well
as the used source code can be found on one of the authors home
page [16].

In addition to the local conductance channels, the Oersted field
caused by the current flow was integrated in our model. The
Oersted field calculations are performed by adding the contribu-
tions from current channels extended beyond the simulation
space. This method is justified because the non-ferromagnetic
parts of the real device, i.e., the buffer and capping layers, are
usually much thicker than the simulated ferromagnetic MTJ
trilayer. Assuming that current channel protrudes symmetrically
from simulated area, Oersted field contributions are calculated
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using the formula: H¼ ðI=2πrÞd=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þd2

p
, where I is the current in

the channel, r is the distance between the channel and the
considered simulation cell, d is half of the total channel length
(see Fig. 1(b)). After adding contributions from all channels, the
Oersted field can be treated as the contribution to the effective
magnetic field in a particular cell.

For a simulation of the magnetization dynamics, we use the
Landau–Lifshitz–Gilbert equation with the STT component:

dm!
dt

¼ �γ0m
!� H

!
eff þαm!� ∂m!

∂t
þγ0aJm

!� ðm!� p!Þþγ0bJm
!� p!:

ð2Þ

First term of Eq. (2) corresponds to the magnetization precession,
second corresponds to damping, third and fourth correspond to
in-plane and perpendicular torques, respectively, where m! is the
normalized magnetization vector of the FL, γ0 ¼ 2:21� 105 m=As
is the gyromagnetic factor, H

!
eff is the effective field derived by

minimizing the local energy densities, α is the damping factor, and
p! is the normalized RL magnetization vector. The in-plane torque
factor is written as follows: aJ ¼ ðℏ=2eμ0MstÞεJ, where t is the FL
thickness, ε=0.7 is the STT coefficient, J is the current density,
whereas the perpendicular torque is implemented as follows:
bJ ¼ b1Jþb2J

2, where b1 ¼ 2:7� 10�9 m and b2 ¼ 2:8� 10�19

m3=A are the quadratic function components, taken from the
experimental data [3].

Our model allows one to adjust the following parameters: η, b1,
b2, α, RP, RAP, while the applied time dependent voltage is the
stimulus vector. By setting η or b1 and b2 to zero, the contribution
from the in-plane torque or the perpendicular torque can be
ignored, respectively. In addition, the model enables performing
the micromagnetic simulations with the current density that
depends on the local magnetization vectors alignment.

3. Results and discussion

In order to compare simulation results to the experimental
values obtained from real devices, we investigated exchange
biased MTJ with a following multilayer structure (thickness in
nm): Ta(5)/CuN(50)/Ta(3)/CuN(50)/Ta(3)/PtMn(16)/Co70Fe30(2)/Ru
(0.9)/Co20Fe40B20(2.3)/MgO(0.95)/Co20Fe40B20(2.3)/Ta(10)/CuN
(30)/Ru(7), described in detail in Ref. [3]. Nano-structured pillars
with an elliptical cross-section of 250�150 nmwere parametrized
for our model purposes in the following way: cell size of
2�2�1 nm, FL with the anisotropy constant of KFL ¼ 0:1 kJ=m3,
saturation magnetization of MFL ¼ 1100 kA=m and the damping
constant equals α¼ 0:017, coupled to the RL with the coupling
energy of JMgO ¼ 0:006 mJ=m3. The RL was antiferromagnetically
coupled to the CoFe pinned layer with the energy of
JRu ¼ �0:019 mJ=m3.

The implemented feedback between the local current density
and the magnetization involves dynamic decrease in the MTJ
resistance. Therefore, for applied bias voltage, the current
increases with the conductivity and the switching process can be
accomplished faster. Fig. 2 presents the dynamic behavior of the
MTJ normalized magnetization vector during the switching pro-
cess from the AP to P state with the fixed current (a) and the
current-resistance feedback (b). The difference confirms that this
feedback has an influence on switching dynamics and should be
taken into account in the simulations.

Simulated Current Induced Magnetization Switching (CIMS)
loops, with (a) in-plane torque component alone, (b) both in-
plane and perpendicular torque components, and (c) both torque
components and Oersted field, are presented in Fig. 3(a–c). In
addition, Fig. 3(d–f) depicts the MTJ resistance during the voltage
sweep as a function of time. Note that for the Oersted field applied
(Fig. 3(f)) the CIMS switching is accomplished for the shortest
time. Moreover, for sufficiently high voltage amplitude, the per-
pendicular torque can overcome the in-plane torque and can cause
indeterministic switching between the AP and P states. This
phenomenon has been already observed experimentally and has
been referred to as the back-hopping effect [17].

The discussed MTJ experimental CIMS loop is depicted in Fig. 4
(a) – resistance measured after voltage pulse and (b) – during the
pulse. In our simulations we are interested in the switching of the
MTJ, so we assume that the resistance of AP state equals value at
the switching voltage obtained by the experiment in Fig. 4(b).

The simulated switching voltage from the AP to P state agrees
quantitatively with the experimental value of Vs¼0.75 V, in con-
trary to the opposite switching polarity, where the discrepancy
between simulated and measured values is observed. Such an
asymmetry in the simulated switching voltages presented in Fig. 3
(c) originates from the Oersted field effect, that favors the AP to P

r
d

G=0 GAPGP G=0 G=0

X X X

d

Fig. 1. (a) The idea of calculating local conductance. White cells represent the non-
ferromagnetic material and gray cells represent the ferromagnetic material with its
magnetization vector. Vertical arrows symbolize the current, whereas crosses stay
for channels with the suppressed current. (b) The illustration to the Oersted field
calculation. The contribution from the channel of length 2d is added to the cell
located in the distance r from that channel.

Fig. 2. Trajectories of normalized magnetization vector of the system during switching from the AP to P state in case of: (a) fixed current density, (b) changing local current
density due to the resistance-current feedback. Arrows show the direction of magnetization switching.
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