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a b s t r a c t

Based on an analytical model of topological insulator, we present the quantum phase transitions of
topological insulators with different symmetries by calculating their phase diagrams and edgestates.
In particular, we show the symmetry protection nature of the topological quantum phase transitions.
Topological quantum phase transitions cannot be classified by symmetries. However, the symmetry of
the system plays an important role, where different topological quantum phase transitions are protected
by different global symmetries.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recent discovery of the two-dimensional (2D) and three-
dimensional (3D) topological insulator (TI) states has generated
great interests in this new state of topological quantum matter
[1–7]. These insulators differ in subtle but essential ways from
ordinary band insulators. For example, in the presence of a sample
boundary, these insulators necessarily possess gapless edgestates
inside the bulk energy gap. The existence of edge channels is due
to the nontrivial topology of the bulk energy bands. The first
topological invariant is called as Chern number or TKNN invariant
[8,9] which measures the quantized Hall conductivity. There are
two other nontrivial topological invariants that are proposed to
describe this topology virtually at the same time: Z2 invariant [10]
proposed by Kane and Mele and spin-Chern number proposed by
Sheng et al. [11]. It is well known that in Landau theory different
orders are classified by symmetries [12]. The phase transitions
of these orders, which occur when a driving parameter in the
Hamiltonian of the system changes across a critical point, are
always accompanied by the global symmetry breaking. However,
there is also an exception that can only be witnessed by the
topological invariants. Without closing the gap, energy spectra
with different topologies cannot be deformed into each other. This
is because a topological quantum phase transition occurs when
changing the topological invariants.

Thus, an interesting issue is what a role symmetry [13,14] plays
in topological insulators [16–20]. For a deeper understanding
and quantitative predictions of novel phenomena associated with
topological insulators, in the present work, we investigate transi-
tions between phases of matter with topological order. Using both
analytical models and numerical calculations we reveal the rela-
tionship between symmetry and phase transition. We find that
with the increase of the Rashba-type term which keeps the time
reversal symmetry (TRS) but breaks the Sz symmetry the quantum
spin Hall (QSH) state turns into a normal insulator (NI) state
directly. While with the increase of the staggered magnetic term
M which breaks the TRS but keeps the Sz symmetry the QSH state
turns into the quantum anomalous Hall (QAH) state firstly before
it goes into the NI state ultimately. Furthermore, we calculate the
edgestates of these topological phases.

The rest of the paper is organized as follows. In Section 2, we
introduce the 2D honeycomb lattice model. In Sections 3 and 4, we
discuss the results for the system coupling with a Rashba-type
spin orbital coupling and a staggered magnetic field, respectively.
Based on the global phase diagram and the edgestates, we show
the symmetry protection nature of the topological quantum phase
transitions. Finally, we conclude this work with a general discus-
sion of the relationships between symmetry and phase transition
in Section 5.

2. Model analysis

We will start from a 2D honeycomb lattice model [21–23], and
then couple it with a Rashba-type spin orbital coupling and a
staggered magnetic field. The Hamiltonian of our model, which
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is relevant to the 2D electrons in a single-atomic layer graphene
system, is given by the following form:

H ¼ t∑
〈i;j〉

c†i cjþ it′ ∑
〈〈i;j〉〉

νi;jc
†
i szcjþλυ∑

i
ξic

†
i ci

þλR∑
i
c†i ðsy � τyÞciþM∑

i
ωic

†
i ci; ð1Þ

where i labels the sites of the honeycomb lattice, c†i ¼ ðc†i↑; c
†
i↓Þ are

the electron creation operators, and s and τ are the Pauli matrices
which are the identities for the spin and orbital indices, respec-
tively. The first term is the nearest neighbor hopping term, where
we have suppressed the spin index on the electron operators.
The second term is the mirror symmetric spin orbit interaction
which involves spin dependent second neighbor hopping. Here
νi;j ¼ 2ffiffi

3
p ðd̂1 � d̂2Þz ¼ 71, i and j are the two next-nearest neigh-

bors, and d̂1 and d̂2 are the unit vectors along the two bonds. The
third term is a staggered sublattice transition which is positive for
A sublattice and negative for B sublattice ðξi ¼ 71Þ. The fourth
term is the Rashba-type spin orbital term which can be arised by
a perpendicular electric field or interaction with a substrate. For
simplicity, the Rashba-type term used here is in a relatively simple
form. The fifth term is a phenomenological term which is used to
describe the spin splitting induced by an external magnetic field or
the magnetic doping [15]. The coefficient ωi is positive for spin-up
and negative for spin-down ðωi ¼ 71Þ.

For the bulk honeycomb lattice, this Hamiltonian can be
written in the momentum space. For each k the Bloch wave
function is a four-component eigenvector juðkÞ〉 of the Bloch
Hamiltonian matrix H(k)

HðkÞ ¼Ψ †

λυþcþM a� ib 0 �λR
aþ ib �λυ�c�M λR 0
0 λR λυ�c�M a� ib

�λR 0 aþ ib �λυþcþM

0
BBBB@

1
CCCCAΨ :

ð2Þ
Due to the two lattice degrees and two spin degrees, the Bloch
wave function is a four-component eigenvector, shown as,

Ψ † ¼ ðΨ †
A;↑;Ψ

†
B;↑;Ψ

†
A;↓;Ψ

†
B;↓Þ, a¼ tð2 cos

ffiffi
3

p
kx

2 cos ky
2 þ cos kyÞ, b¼ t

ð2 cos
ffiffi
3

p
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2 sin ky
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ffiffi
3

p
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2 cos 3ky
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3

p
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The Hamiltonian H(k) gives four energy bands, of which two are
occupied. As have been pointed out [10] that for λR ¼M¼ 0, there
is an energy gap with magnitude j3

ffiffiffi
3

p
t′�λυj. For λυ43

ffiffiffi
3

p
t′,

the gap is dominated by λυ, andthe system is a normal insulator.
While 3

ffiffiffi
3

p
t′4λυ describes the QSH state. The staggered sublattice

potential describes the transition between the QSH state and the
NI state. From the expression of a, b and c, we can see that without
the Rashba-type term the system has Sz symmetry but breaks
the TRS. However, if the spin splitting term M equals to zero, the
system keeps TRS but breaks Sz symmetry. In the following, we
will divide into two parts to discuss the relationship between the
global symmetry and the phase transition.

3. System with TRS but without Sz symmetry

3.1. Global phase diagram

We are here focusing on the case of M¼0 which means that the
system keeps TRS while breaks Sz symmetry. By diagonalizing the
Hamiltonian H(k), the eigenvalues of the honeycomb lattice can be
obtained as

Ek ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2þm2þλ2υþλ2R72

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2λ2Rþm2λ2Rþm2λ2υ

qr
: ð3Þ

The parameters are that t is set to be unit throughout this paper
and t′¼ 0:1. As mentioned above, the system is in the QSH state
for 3

ffiffiffi
3

p
t′4λυ when λR ¼ 0. We calculate the phase boundary by

Ek ¼ 0. Using the expression of a, b and c, we obtain the global
phase diagram with respect to λR and λυ which is shown in Fig. 1.
It can be seen that there are two phases in the global phase
diagram, one is in the QSH state which is surrounded by the solid
line and the others is in the NI state.

3.2. Edgestates

A more direct way of identifying the QSH phase is to study the
edgestate spectrum. There are always an odd number of Kramers's
pairs of edgestates on the boundary of a QSH insulator, and
an even number pairs (possibly zero) for the boundary of a NI.
To explore the edge topological invariant characterizing the QSH
state, we now turn to study the honeycomb lattice ribbon with
zigzag edges, That is, with periodic boundary condition in the
y-direction and open boundary condition in the x-direction.
Note that with this choice ky is still a good quantum number. By
defining the partial Fourier transformation

cky ðxÞ ¼
1ffiffiffiffiffi
Ly

p ∑
y
cðx; yÞeikyy; ð4Þ

with (x, y) as the coordinates of honeycomb lattice sites, the
Hamiltonian can be rewritten. In this way, the 2D system can be
treated as Ly independent 1D tight-binding chains, where Ly is the
period of the lattice in the y-direction. The eigenvalues of the 1D
Hamiltonian HðkyÞ can be obtained numerically for each ky,
as shown in Fig. 2. An important property of the spectrum is the

Fig. 1. The global phase diagram of the Hamiltonian withM¼0. The parameters are
t ¼ 1; t′¼ 0:1.

Fig. 2. The edgestate of the Hamiltonian without the magnetic term. The energy
bands of spin-up and spin-down are doubly degenerate and the units of Ek and ky
are eV and Å�1, respectively. The parameter is set to be t¼1, t′¼ 0:05, λv ¼ 0, the
primitive vectors a¼

ffiffiffi
3

p
.
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