Contents lists available at [ScienceDirect](www.sciencedirect.com/science/journal/09214526)

Physica B

 j

Theoretical studies of spin-Hamiltonian parameters of $Mo⁵⁺$ ion doped in K_2 SnCl₆ crystal

骤 PHYSICA

Wang Fang^{*}, Da-Xiao Yang, Heng-Jie Chen, Hai-Yan Tang

Department of Mathematics and Physics, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China

article info

ABSTRACT

Article history: Received 8 July 2013 Received in revised form 25 July 2013 Accepted 29 July 2013 Available online 3 August 2013

Keywords: Charge transfer mechanism Defect structure $\text{[MoCl}_6\text{]}^{-1}$ cluster Ligand field theory

1. Introduction

 A_2XY_6 (A = K, Cs, Rb, Tl; X = tetravalent cation, Y = F⁻, Cl⁻, Br⁻, I⁻) crystals doped with transition metal or rare earth ions have attracted a great deal of attention $[1-8]$ $[1-8]$ $[1-8]$ because of the applications in luminescence and, in particular, in upconversion luminescent materials [\[6](#page--1-0)–[8](#page--1-0)], and of the merits of being doped easily with different impurities (especially at the 6-fold coordinated tetravalent cation site) [\[1\].](#page--1-0) When the pentavalent Mo^{5+} ion is doped into K_2SnCl_6 crystal ([Fig. 1\)](#page-1-0), it will substitute for the tetravalent Sn^{4+} ion and a vacancy with negative charge will be introduced along one of the C_4 axis at the interstitial site because of the charge compensation effect [\[9\].](#page--1-0)The experimental EPR results (g factors $g_{//}$, g_{\perp} and hyperfine structure constants $A_{//}, A_{\perp}$ show that $[{\rm MoCl}_6]^{-1}$ clusters are in the compressed tetragonal symmetry and the ground state of Mo^{5+} ion is B_{2g} (d_{xy}) [\[9,10](#page--1-0)]. There are two possible defect models for the compressed tetragonal symmetry proposed in the investigation, one is C_{4v} symmetry caused by the repulsion of one Cl^- with the negative compensating hole along the C_4 axis, another is D_{4h} symmetry due to the static Jahn–Teller effect. To find which one is realistic, the calculations have been carried out by the use of those two defect models proposed, and the calculated results show that when D_{4h} defect model is used, the results from both PTM and CDM methods are in good agreement with the experimental dada, while for C_{4v} defect model, no plausible results can be obtained in any case. So, we carry out the calculations by the use D_{4h} defect model in the following

E-mail address: [mailfangwang@163.com \(W. Fang\)](mailto:mailfangwang@163.com).

section. In the calculation, the MO theory in the ligand-field (LF) scheme is used and the contributions from the CT excitation states are taken into account. The investigation show that this CT mechanism plays a decisive role in accounting for the SH parameters of $4dⁿ$ transition metal (TM) ions with Cl^- ligands.

 $©$ 2013 Elsevier B.V. All rights reserved.

The spin-Hamiltonian (SH) parameters (g factors g_{ij} , g_{\perp} and hyperfine structure constants A_{ij} , A_{\perp}) of K_2 SnCl₆: Mo⁵⁺ (4d¹) crystal are theoretically studied by the use of two microscopic spin-Hamiltonian (SH) methods, the high-order perturbation theory method (PTM) and the complete diagonalization (of energy matrix) method (CDM) within the molecular orbital (MO) scheme. The contributions arising both from the crystal field and charge transfer excitations are taken into account. The investigations show that the charge transfer mechanism plays a decisive role in the understanding of the spin-Hamiltonian (SH) parameters for 4d¹ ions in crystals with the strong coordinate covalence, especially for $g_{\ell} > g_{\perp}$ which cannot be explained in the frame work of traditional crystal field approximation (CFA). The local defect

structure around Mo^{5+} impurity ion center is determined to be $D_{4 h}$ point group symmetry.

2. Calculations

The ground state of Mo⁵⁺ ion in K₂SnCl₆ crystal is B_{2g} (d_{xy}) and the expressions of SH parameters g factors and hyperfine structure constants A factors for the single orbital term can be derived by the PTM which have been discussed in detail elsewhere [\[11](#page--1-0)–[13\]](#page--1-0).

The one-electron basis functions for antibonding orbitals belonging to t_{2g} and e_g state for 4dⁿ ions in octahedral field can be expressed as the liner combination of atomic orbitals (LCAO) [\[14\]](#page--1-0),

$$
\begin{aligned} \n\varphi_{t}^{a} &= (N_{t}^{a})^{-1/2} (\varphi_{t} - \lambda_{\pi} \chi_{\pi}), \\ \n\varphi_{e}^{a} &= (N_{e}^{a})^{-1/2} (\varphi_{e} - \lambda_{s} \chi_{s} - \lambda_{\sigma} \chi_{\sigma}), \n\end{aligned} \tag{1}
$$

respectively, and the bonding orbital can be written as [\[14\]](#page--1-0)

$$
\psi_{t}^{b} = (N_{t}^{b})^{-1/2} (\chi_{\pi} + \gamma_{\pi} \varphi_{t}), \n\psi_{e}^{b} = (N_{e}^{b})^{-1/2} (\chi_{\sigma} + \gamma_{\sigma} \varphi_{e}),
$$
\n(2)

where φ_t and φ_e denote the pure *d* orbital of the metal ion, $\chi_i(i=\pi, s, \sigma)$ are group orbitals of ligands, $(N_t^b)^{-1/2}$, $(N_e^b)^{-1/2}$ and $(N_t^a)^{-1/2}$, $(N_e^a)^{-1/2}$ are the normalization constants, and $\lambda_i(i=\pi, s, \sigma)$ are covalency parameters. The third-order perturbation formulas of g factors g_{ℓ} , g_{\perp} and second-order hyperfine structure constants A factors $A_{//}$, A_{\perp} based on CF mechanisms for 4d¹ ion in tetragonal symmetry

^{*} Corresponding author. Tel.: +86 23 6502 3914.

^{0921-4526/\$ -} see front matter \circ 2013 Elsevier B.V. All rights reserved. <http://dx.doi.org/10.1016/j.physb.2013.07.030>

Fig. 1. One unit cell of K_2 SnCl₆ crystal.

are derived as $(g_s = 2.0023)$

$$
g_{z} = g_{s} + \Delta g_{z}^{CF},
$$
\n
$$
\Delta g_{z}^{CF} = -\frac{8k_{CF}^{2} \zeta_{CF}^{2}}{E_{1}} - \frac{4k_{CF}^{2} \zeta_{CF}^{2} \zeta_{CF}^{2}}{E_{2}^{2}} - \frac{k_{CF}^{2} \zeta_{CF}^{2}}{E_{2}^{2}} - \frac{k_{Z}^{2}}{E_{2}^{2}},
$$
\n
$$
g_{x} = g_{s} + \Delta g_{x}^{CF},
$$
\n
$$
\Delta g_{x}^{CF} = -\frac{2k_{CF}^{2} \zeta_{CF}}{E_{2}} + \frac{k_{CF}^{2} \zeta_{CF}^{2}}{E_{2}^{2}} + \frac{2k_{CF}^{2} \zeta_{CF}^{2} \zeta_{CF}^{2}}{E_{1}E_{2}} - \frac{2\zeta_{CF}^{2} g_{s}}{E_{1}^{2}} - \frac{\zeta_{CF}^{2} g_{s}}{2E_{2}^{2}},
$$
\n
$$
A_{z} = A_{z}^{CF}(1) + A_{z}^{CF}(2),
$$
\n
$$
A_{z}^{CF}(1) = P\left(-\kappa - \frac{4}{7}\right)/N_{t}^{3},
$$
\n
$$
\left(\Delta g_{x}^{CF}(1) - \Delta g_{x}^{CF}(1)
$$

$$
A_z^{CF}(2) = -P\left(\frac{8\zeta_{CF}'}{N_t^a E_1} + \frac{6\zeta_{CF}}{7\sqrt{N_t^a N_e^a E_2}}\right),
$$

\n
$$
A_x = A_x^{CF}(1) + A_x^{CF}(2),
$$
\n(4)

$$
A_x^{CF}(1) = P\left(-\kappa + \frac{2}{7}\right)/N_t^a,
$$

$$
A_x^{CF}(2) = -P\left(\frac{11\zeta_{CF}}{7\sqrt{N_t^a N_e^a E_2}}\right),
$$

in which

$$
E_1 = 10Dq, E_2 = -3Ds + 5Dt.
$$
 (5)

Dq is cubic crystal field parameter and estimated to be 2350 cm^{-1} [\[15\]](#page--1-0), Ds and Dt represent the tetragonal crystal field parameter and have the following form using the superposition model

$$
Ds = \frac{4}{7} \overline{A_2}(R_0) \left[\left(\frac{R_0}{R_\perp} \right)^3 - \left(\frac{R_0}{R_{//}} \right)^3 \right],
$$

\n
$$
Dt = \frac{16}{21} \overline{A_4}(R_0) \left[\left(\frac{R_0}{R_\perp} \right)^5 - \left(\frac{R_0}{R_{//}} \right)^5 \right],
$$
\n(6)

and $\overline{A}_2(R_0)$, $\overline{A}_4(R_0)$ are intrinsic parameters with reference distance R_0 , $\overline{A_4}(R_0) \approx 3/4Dq$ for d^n ions in cubic field [\[16,17](#page--1-0)]. The ratio $\overline{A}_2(R_0)/\overline{A}_4(R_0)$ for mdⁿ ions in clusters decreases with the increasing m value, for $3d^n$, $\overline{A_2(R_0)}/\overline{A_4(R_0)} \approx 9$ –12 are found for many ions in crystals [\[18,19\]](#page--1-0) and $\overline{A}_2(R_0)/\overline{A}_4(R_0) = 8.3$ is taken here in the calculations. The spin-orbit coupling (SOC) parameters ζ , ζ' and the orbital

reduction factors k , k' related to CF mechanisms in Eq. (3) are [\[14\]](#page--1-0)

$$
\zeta_{CF} = (N_t^a)^{-1} [\zeta_d + (\lambda_\pi)^2 \zeta_p / 2],
$$

\n
$$
\zeta_{CF}' = (N_t^a N_e^a)^{-1/2} [\zeta_d - \lambda_\pi \lambda_\sigma \zeta_p / 2],
$$

\n
$$
k_{CF} = (N_t^a)^{-1} [1 - 2\lambda_t S_\pi + (\lambda_\pi)^2 / 2]
$$
\n(7)

$$
k'_{CF} = (N_t^a N_e^a)^{-1/2} [1 - \lambda_s S_s - \lambda_\sigma S_\sigma - \lambda_\pi S_\pi - \lambda_\pi (\lambda_\sigma + A\lambda_s)/2],
$$

where ζ_d and ζ_p are the SOC parameters of free 3 d^n ion and that of ligand ions in free state, respectively. For Mo⁵⁺, $\zeta_d \approx 1013$ cm⁻¹ [\[20\]](#page--1-0) and for Cl⁻, $\zeta_p \approx 587$ cm⁻¹ [\[21\]](#page--1-0), $S_s = \langle \varphi_e | \chi_s \rangle$, $S_\sigma = \langle \varphi_e | \chi_\sigma \rangle$, $S_\pi = \langle \varphi_t | \chi_\pi \rangle$ are the group overlap integrals, which can be calculated using the Clementi's SCF functions $[22,23]$ and impurity-ligand distance R in crystal. Considering that the ionic radius r_i (≈ 0.061 nm [\[24\]\)](#page--1-0) of impurity Mo^{5+} is unlike the radius r_h (≈ 0.069 nm [\[24\]](#page--1-0)) for the replaced host ion Sn⁴⁺, the impurity-ligand distance R for Mo⁵⁺ ion in K₂SnCl₆ should be different from the corresponding R_h (\approx 0.2448 nm [\[25\]\)](#page--1-0) in the host K₂SnCl₆ crystal, we estimate approximately the distance R from the empirical formula $R_0 \approx R^h +$ $1/2(r_i - r_h)$ [\[26](#page--1-0),[27\]](#page--1-0) and obtain $R_0 = 0.2408$ nm. Thus, the group overlap are calculated to be

$$
S_s \approx 0.1028, S_\sigma \approx 0.1848, \text{ and } S_\pi \approx 0.0746. \tag{8}
$$

In Eq. (6) R_1 represents equatorial metal-ligand distance and equal to R_0 , R_{\parallel} represents axial metal-ligand distance and taken to be $(R_0 - \Delta R)$ in which ΔR is the inward displacement of Cl⁻ along the C_4 axis. In Eq. (4), P is dipolar hyperfine structure constants and has the value of -66.7×10^{-4} cm⁻¹ for Mo⁵⁺ [\[28\]](#page--1-0) and κ is the Femi-contact term which is taken to be 1.05 [\[9\]](#page--1-0), $A = R_0 \langle \varphi_x | \partial / \partial x | \chi_s \rangle$, for Cl⁻ ion $\langle \varphi_x | \partial/\partial x | \chi_s \rangle = -0.409$ [\[29\].](#page--1-0)

The contributions to the SH parameters from the CT levels come from the excitation procedure of promoting an electron from the occupied π bonding orbitals e_g^* (d_{xz} and d_{yz}) or b_{1g}^* (d_{x-y}^2) to d_{xy} ground state, and the high-order perturbation formulas of the SH parameters due to this CT mechanism have the follow form

$$
\Delta g_{z}^{CT} = \frac{8k'\zeta r\zeta\zeta r}{E_{1C}},
$$

\n
$$
\Delta g_{x}^{CT} = \frac{2k_{CT}\zeta_{CT}}{E_{2C}},
$$
\n(9)

$$
A_{z}^{CT} = -P \left(\frac{8\gamma_{e}\zeta_{CT}'}{\sqrt{N_{t}^{a}N_{e}^{b}}E_{1c}} + \frac{6\gamma_{t}\zeta_{CT}}{7\sqrt{N_{t}^{a}N_{t}^{b}}E_{2c}} \right),
$$

\n
$$
A_{x}^{CT} = -P \left(\frac{11\gamma_{t}\zeta_{CT}}{7\sqrt{N_{t}^{a}N_{t}^{b}}E_{2c}} \right),
$$
\n(10)

where

$$
\zeta_{CT} = (N_t^b N_t^a)^{-1/2} [\gamma_\pi \zeta_d - \lambda_\pi \zeta_p/2],
$$

\n
$$
\zeta_{CT}^{\prime} = (N_t^b N_e^a)^{-1/2} [\gamma_\sigma \zeta_d + \lambda_\pi \zeta_p/2],
$$
\n(11)

$$
k_{CT} = (N_t^b N_t^a)^{-1/2} [\gamma_\pi + (1 - \lambda_\pi \gamma_\pi) S_\pi - \lambda_\pi / 2],
$$

\n
$$
k_{CT}^{\prime} = (N_t^b N_e^a)^{-1/2} [\gamma_\sigma - \gamma_\sigma \lambda_\pi S_t - S_\sigma + \lambda_t / 2],
$$

and E_{1c} , E_{2c} are CT energies of $e^{-i}_{s}(d_{xz} \text{ and } d_{yz})$ and $b_{1g}^{*}(d_{x-y}^{2})$ respectively. We estimate $E_{1c} = 41150$ and $E_{2c} = 28250$ cm⁻¹ [\[15\].](#page--1-0) The g factors g_{ℓ} , g_{\perp} and hyperfine structure constants A_{ℓ} , A_{\perp} from both the CF and CT mechanisms are expressed as

$$
g_{//} = g_z + g_z^{CT}, g_{\perp} = g_x + g_x^{CT},
$$

\n
$$
A_{//} = A_z + A_z^{CT}(2), A_{\perp} = A_x + A_x^{CT}(2).
$$
\n(12)

All the normalization relationship and the relations between the LCAO coefficients and the group overlap used in the calculations can be found in reference [\[14\]](#page--1-0).

Download English Version:

<https://daneshyari.com/en/article/1810045>

Download Persian Version:

<https://daneshyari.com/article/1810045>

[Daneshyari.com](https://daneshyari.com)