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We reported the existence and stability of defect solitons in saturable nonlinearity media with parity-
time (PT) symmetric optical lattices. Families of fundamental and dipole solitons are found in the semi-
infinite gap and the first gap. The power of solitons increases with the increasing of the propagation
constant and saturation parameter. The existence areas of fundamental and dipole solitons shrink with
the growth of saturation parameter. The instability of dipole solitons for positive and no defect induced
by the imaginary part of PT symmetric potentials can be suppressed by the saturation nonlinearity, but
for negative defect it cannot be suppressed by the saturation nonlinearity.
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1. Introduction

In 1998, Bender et al. found that a wide class of non-Hermitian
Hamiltonians can actually possess entirely real spectra as long as
they respect parity-time (PT) symmetry [1]. The concept was
introduced to optics by many people [2,4-6]. A necessary condi-
tion for a Hamiltonian to be PT symmetry is that its complex
potential satisfies V (x)=V *(—x) [7,8]. This implies that the real
part of the potential must be an even function of position and that
the imaginary part must be odd. In optics, PT-symmetric structures
can be constructed by inclusion of gain or loss regions into
waveguides, which make the complex refractive-index distribu-
tion obeying the condition n(x)=n*—x) [3-6]. Experimental
realizations of such PT systems have been reported recently. Guo
et al. have observed passive PT-symmetry breaking and phase
transition that lead to a loss-induced optical transparency in
specially designed pseudo-Hermitian guiding potentials [9]. Riiter
et al. have observed the spontaneous PT symmetry breaking and
power oscillations violating left-right symmetry in PT optical
coupled linear system involving a complex index potential [10].
PT symmetries have been realized in the LRC circuits [11,12], and
dual behavior of PT-symmetric scattering has been observed [13].

Recently, Regensburger et al. represent the application of PT-
symmetry to a new generation of multifunctional optical devices
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and networks experimentally [14]. Those theoretical and experi-
mental results led to the proposal of a new class of PT-symmetric
synthetic materials with intriguing and unexpected properties
[10,14,15]. In optics, nonlinearities in the PT-symmetric systems
have been considered by many authors [15-19], especially in the
PT-symmetric optical lattices [5,6,15], and some new kinds of
soliton were found and investigated [5,20-23].

Defect solitons in optical lattices with specially designed defect
have attracted special attention due to their novel and unique
characteristics in diverse areas of physics and have been applied
extensively for steering of optical beams [24-27], all-optical
switches [28,29], filtering [30] and routing of optical signals [31].
Defect solitons in local Kerr nonlinearity media with PT symmetric
optical lattices have been studied, and stable solitons are found
mainly in the semi-infinite gap [22]. Recently, we have studied
defect solitons in nonlocal Kerr nonlinearity media with PT
symmetric optical lattices and found that the nonlocal nonlinear-
ity can expand stable ranges of solitons [23]. However, the optical
properties with PT symmetric potentials in saturable nonlinearity
media have not been studied. It is noteworthy that the nonlinear-
ity in the photorefractive media, in which Riiter et al. have
observed the non-reciprocal wave propagation [10], is saturable
nonlinearity. The nonlinearity saturation suppresses the collapse
of fundamental solitons in two and three dimensions [32,33],
which opens the door for their experimental observation in
multidimensional optical beams. The instability of higher-order
(multihump) solitons is not suppressed by the nonlinearity satura-
tion in general lattices [34-36]. However, in this paper, we find
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that the instability of dipole solitons can be suppressed by the
saturation nonlinearity in the PT symmetric optical lattices. The
saturable nonlinearity can expand stable ranges of fundamental
and dipole solitons, especially in the first gap. It is found that the
stability of defect solitons depends on the defect, the degree of
saturable nonlinearity, PT potential and the symmetry of solitons.

2. Theoretical model

We consider the propagation of light beam in PT symmetric
defective lattices embedded into a focusing saturable medium. The
evolution of complex normalized amplitude U of the light field can
be described by the following nonlinear Schrodinger equation:

U

1—+7—+p[V(x) + lW(x)]U+ Trsi0?

where the transverse x and longitudinal z coordinates are normal-
ized to the width and diffraction; p is the depth of PT symmetric
potentials; s stands for the degree of saturable nonlinearity;
according to Ref. [37], s is depended on the light-induced max-
imum refractive-index change and s is positive. V(x) and W(x) are
the real and imaginary parts of PT symmetric defective potentials,
respectively, which are assumed in this paper as

V(%) = cos?(x)[1 + e exp(—x3/128)], W(x) =W, sin(2x), )

here ¢ represents the strength of the defect, and defect is
expressed as a super-Gaussian profile [22]. ¢e=0 corresponds to
uniform lattice, and the soliton in this lattice is a gap soliton, so we
define this lattice as no defect. When e > 0, the center refractive
index is greater than that of both sides, and the defect is defined as
positive defect. When e <0, the center refractive index is lower
than that of both sides, and the defect is defined as negative
defect. The parameter W, represents the strength of the imaginary
part compared with the real part. The linearized normalization
relation of Eq. (1) is given in Ref. [4].

The linearized version in Eq. (1) has a Bloch band structure
when e¢=0. The band diagram can be entirely real when the
system is operated below the phase transition point (Wp=0.5) [5].
In this paper, only PT lattice with its Bloch spectrum below the
phase transition point is considered, and without loss of general-
ity, parameters Wy=0.15 and Wy=0.25 are adopted throughout
the paper. Typical PT lattice profile and its Bloch band structure
with Wp=0.15 are shown in Fig. 1(a) and (b), respectively. From
Fig. 1(b), we can see that the region of semi-infinite gap for p=4
and Wp=0.15is b > 2.7, and the first and the second gaps locate in
0.83 <b <2.63 and —0.55 < b < 0.15, respectively, where b is the
propagation constant.
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Fig. 1. For p=4 and W(,=0.15, (a) profile of the PT lattice (blue and red lines
represent the real and imaginary parts, respectively) and (b) band structure of the
lattice in (a). (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this article.)

We search for stationary solutions to Eq. (1) in the form
U = f(x) exp(ibz), where f(x) is the complex function satisfies
equations:
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The solutions of defect solitons are gotten numerically from
Eq. (3). Families of solitons are determined by the propagation
constant b, saturation parameter s, lattice depth p, and the
strength of the imaginary part of PT symmetric potential W.
Without loss of generality, we fixed lattice depth p=4 and varied
b, s, Wy throughout the paper unless stated otherwise. To elucidate
the stability of defect solitons, we search for the perturbed
solution to Eq. (1) in the form U(x,z)=I[f(x)+ ux,z)+
iv(x,z)] exp(ibz), where the real [u(x,z)] and imaginary [v(x,2)]
parts of the perturbation can grow with a complex rate § upon
propagation, i.e. u(z,x) = p;(x)e* and v(z, X) = p,(x)e*, respectively.
Linearization of Eq. (1) around the stationary solution f(x) yields
the eigenvalue problem

+ pIV(x) + iIWX)If g 3)
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The above coupled equations can be solved numerically to find the

maximum value of Re(s). If Re(5) > 0, solitons are unstable. Other-
wise, they are stable.

(6]

3. Defect solitons

In the saturable nonlinearity media with PT symmetric defec-
tive lattices, we find two types of defect solitons for positive, no,
and negative defect cases, as shown in Figs. 2 and 3. The first type
is nodeless fundamental solitons, which can exist stably in the
semi-infinite gap. We consider that fundamental solitons are PT
symmetric, because their real parts are even and imaginary parts
are odd, that is similar to the PT symmetric potential. The other
type of defect solitons, which exists in the first gap, is called dipole
solitons in this paper, because they have two significant intensity
peaks. The real parts of dipole solitons are odd and the imaginary
parts are even, that is opposite to the PT symmetric potentials and
fundamental solitons. In this paper we state that dipole solitons
are PT antisymmetric.

For positive, no, and negative defect, we take ¢ =0.5, ¢ =0 and
e =—0.5, respectively. The field profiles of the defect solitons are
shown in Fig. 2(a)-(d) for different defects, saturation parameter s
and symmetric. Fig. 2(a) shows fundamental soliton in the semi-
infinite gap, while dipole soliton in the first gap is shown in Fig. 2
(b) for positive defects. One can see that the poles of dipole
solitons are located inside the central channel of the lattice. The
properties of defect solitons with zero defects are similar to those
with positive defects. Differing from the positive and zero defects,
fundamental solitons can exist in both the semi-infinite gap and
the first gap, as shown in Fig. 2(c) and (d).
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