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a b s t r a c t

The behavior of a three-dimensional isotropic Heisenberg ferromagnet in the presence of a magnetic

field H is investigated in the random phase approximation (RPA) near the Curie temperature Tc. It is

shown that the magnetization M at the Curie temperature Tc is described by the law MðT ¼ TcÞ �H1=5

and the initial magnetic susceptibility w0 at temperatures TZTc is given by w0ðTZTcÞ � ðT�TcÞ
�2. It

means that in the RPA the critical exponents for a three-dimensional Heisenberg ferromagnet coincide

with the critical exponents for the Berlin-Kac spherical model of a ferromagnet rather than with the

critical exponents of the mean field approximation (MFA). Hence it follows as well that, when a

magnetic field H is risen from H¼0 to H¼Ha , the magnetic entropy SM will be decreased as

DSMðT ¼ TcÞ ��H4=5
a at the Curie temperature Tc and as DSMðT4TcÞ ��ðT�TcÞ

�3H2
a at temperatures

T4Tc .

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The magnetocaloric effect in ferromagnets has attracted
recently considerable attention both from the fundamental point
of view and from the viewpoint of its practical applications [1–3].
Technical use of this effect is based on a cyclic process, which
includes the isothermal magnetic entropy change DSM upon
magnetic field increase from H1 to H2 as well as adiabatic
temperature change DTad upon magnetic field decrease from H2

to H1. In order to calculate the magnetic entropy change DSM

upon magnetic field variation from H1 to H2, it is necessary to
know the temperature and field dependence of the magnetization
MðT ,HÞ [3]:

DSMðT,H2�H1Þ ¼ SMðT ,H2Þ�SMðT ,H1Þ

¼

Z H2

H1

@MðT ,HÞ

@T

� �
H

dH: ð1Þ

For obtaining MðT ,HÞ in low-dimensional magnetic systems
rather sophisticated theoretical methods are used (see, for exam-
ple Ref. [4]). At the same time the simplest method, namely, the
mean field approximation (MFA) is used as a rule for describing
MðT ,HÞ in three-dimensional ferromagnets, in which the magne-
tocaloric effect has a maximum in the vicinity of the Curie
temperature Tc [5,6].

The shortcomings of the MFA are well known. Firstly, the MFA
cannot describe correctly the low-temperature magnetization of
ferromagnets in the magnetically ordered state since it does not
take into consideration spin-wave excitations. Secondly, the MFA
falls to account for a short-range magnetic order in the para-
magnetic state of ferromagnets above the Curie temperature Tc. It
is evident that neglect of the short-range magnetic order may
introduce considerable errors in evaluating the magnetic entropy
neat Tc.

Therefore, it is worthwhile to use a more advanced
approximation—the random phase approximation (RPA) [7–9]
which enables to take into account both spin waves at low
temperatures and effects of the short-range magnetic order in
the paramagnetic temperature region. The advantages of the RPA
have been successfully displayed [10] in case of isotropic one- and
two-dimensional ferro- and antiferromagnetic systems, which
exhibit the short-range magnetic order in the paramagnetic state
at finite temperatures Ta0, since the long-range magnetic order
in these systems occurs only at T¼0. In Ref. [10] spin–spin
correlation functions, which describe the short-range magnetic
order for the relevant systems in an explicit form, as well as the
magnetic susceptibility has been investigated in the framework of
the RPA, and the results were in very good agreement with such
elaborate theoretical approximations as large-N theory and the
renormalization group approach.

As regards the RPA studies of the three-dimensional ferro-
magnets, major efforts in these investigations have been aimed at
calculating the magnetization MðT ,HÞ in the low-temperature
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region [8,9]. As a result, only the expression for the Curie
temperature Tc and the high-temperature series expansion of
the susceptibility wðTbTcÞ have been obtained at high tempera-
tures [8,9]. The field and temperature dependence of the magne-
tization MðT,HÞ as well as the similar dependence of the magnetic
entropy SMðT ,HÞ for three-dimensional ferromagnets have not
been examined thoroughly in the immediate vicinity of Tc in the
framework of the RPA. Hence these issues will be the main
subject of our paper. One would expect that the RPA for three-
dimensional ferromagnets in the paramagnetic state near Tc a0,
analogously to the RPA for one- and two-dimensional magnetic
systems near Tc¼0 [10], will give a more exact description of the
magnetization MðT ,HÞ and the magnetic entropy SMðT ,HÞ as
compared to the MFA.

2. Calculations of the magnetization near Tc

For obtaining the magnetization MðT,HÞ in a system of N

localized magnetic moments with isotropic exchange interactions
it is necessary to know the thermodynamic average value of the
Z spin projection s�/Sz

nS on the magnetic field H direction:

MðT ,HÞ ¼Nm0/Sz
nS�Nm0s ð2Þ

(here m0 ¼ gmB, g—the Lande factor, mB—the Bohr magneton).
The Hamiltonian of the isotropic Heisenberg ferromagnet with

the exchange interaction J40 of the z nearest neighbors is

H¼�m0H
XN

n ¼ 1

Sz
n�

1

2
J
XN

n ¼ 1

Xz

D ¼ 1

SnSnþD: ð3Þ

A self-consistent equation for s, corresponding to the Hamil-
tonian (3), can be obtained in the framework of the RPA, using the
method of the double-time-temperature spin Green functions and
the so-called Tyablikov decoupling [7–9]. For arbitrary quantum
spin S this equation has the form [7–11]:

s¼ ðS�FÞð1þFÞ
2Sþ1
þðSþ1þFÞF2Sþ1

ð1þFÞ2Sþ1
�F2Sþ1

, ð4Þ

where

F¼
1

N

X
k

1

expðEk=kBTÞ�1
, Ek ¼ m0Hþ Jzsð1�gkÞ,

gk ¼
1

z

X
D

expðikDÞ: ð5Þ

For the linear ferromagnetic chain and the square ferromag-
netic lattice the behavior of sðT ,HÞ �MðT ,HÞ and, respectively,
wðTÞ for T40 has been investigated in Ref. [10] with the help of
Eq. (4). In order to solve this task for the three-dimensional
ferromagnetic lattices it is useful in Eq. (4) to introduce a quantity

G¼
1

N

X
k

coth
Ek

2kBT

� �
, ð6Þ

connected with F by the relation

F¼ 1
2ðG�1Þ: ð7Þ

Substituting Eq. (7) in Eq. (4) gives

s¼ 1

2

ð2Sþ1�GÞðGþ1Þ2Sþ1
þð2Sþ1þGÞðG�1Þ2Sþ1

ðGþ1Þ2Sþ1
�ðG�1Þ2Sþ1

: ð8Þ

At high temperatures, near the Curie temperature Tc, when
m0H=kBT51 and Jzs=kBT51, it follows from Eq. (5) that
Ek=2kBT51 and, correspondingly, Gb1. Then Eq. (8) can be
expanded in powers of 1=G51:

s� 2SðSþ1Þ

3G
�

2SðSþ1Þð2S�1Þð2Sþ3Þ

45G3
þ � � � : ð9Þ

In its turn, expanding cothðEk=2kBTÞ in Eq. (6) in powers of
Ek=2kBT51, one can obtain

G�
1

N

X
k

2kBT

Ek

� �
þ

Ek

6kBT

� �
þ � � �

� �

�
2kBT

Jzs
1

N

X
k

1

1þm0H=Jzs�gk

þ
Jzsþm0H

6kBT

¼
2kBT

Jzs Lnn 1þ
m0H

Jzs

� �
þ

Jzsþm0H

6kBT
: ð10Þ

One can see that the leading term in the sum (10) contains a
diagonal matrix element of the lattice Green function
Lnnð1þm0H=JzsÞ, which, in the general case, is determined by
the following expression for a complex variable E [12]:

LnnðEÞ ¼
1

N

X
k

1

E�gk

¼
O0

ð2pÞ3

Z
dk

1

E�gk

ð11Þ

(here O0—the unit cell volume for a three-dimensional lattice).
Generally speaking, the behavior of LnnðEÞ as a function of the

complex variable E is strongly dependent on the lattice dimen-
sionality. It is known that for the linear ferromagnetic chain this
matrix element is equal to Lð1Þnn ðEÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
E2�1
p

in the region EZ1
and for the square ferromagnetic lattice it is equal to
Lð2Þnn ¼ 2=pEKð1=EÞ at EZ1 [13], where Kð1=EÞ is the first-kind
complete elliptic integral. These matrix elements Lð1Þnn ðEÞ and
Lð2Þnn ðEÞ are divergent at E-1þ , so that G in Eq. (10) goes to infinity
and s in Eq. (9) goes to zero at E-1þ . Since the limit E-1þ

corresponds to H-0, it means that the spontaneous long-range
ferromagnetic order is absent in the one- and two-dimensional
lattices at finite temperatures Ta0.

However, for the three-dimensional cubic lattices the matrix
elements Lð3Þnn ðE¼ 1þ Þ � Lnnð1

þ
Þ take finite values, and the singular

behavior of these diagonal matrix elements of the three cubic
lattice Green functions in a sufficiently small neighborhood of the
singularity E¼ 1 is described by the expansion in powers of (E�1)
[12,14]:

LnnðEÞ ¼
X1
n ¼ 0

AnðE�1Þn�
X1
n ¼ 0

BnðE�1Þnþ1=2

� IW�B0ðE�1Þ1=2
þA1ðE�1Þ�B1ðE�1Þ3=2

þ � � � : ð12Þ

Here A0 ¼ Lnnð1
þ
Þ � IW are the well-known Watson integrals for

the cubic lattices, and An, Bn are constants. It has been calculated
[12] that IW and B0 are equal to Isc

W C1:517, Bsc
0 ¼ 3

ffiffiffi
3
p

=p
ffiffiffi
2
p

C
1:169 for the simple cubic lattice, Ibcc

W C1:393, Bbcc
0 ¼

2
ffiffiffi
2
p

=pC0:910 for a body-centered lattice, and Ifcc
W C1:345, B0 ¼

3
ffiffiffi
3
p

=2pC0:827 for the face-centered lattice.
Therefore, taking into account m0H=Jzs51 near Tc (since

m0H=JzsðTÞ � w�1ðTÞ is proportional to the inverse magnetic sus-
ceptibility per spin and goes to zero at T-T þc ) and the expansion
(12), we can approximate Lnnð1þm0H=JzsÞ in Eq. (10) as

Lnn 1þ
m0H

Jzs

� �
� IW�B0

m0H

Jzs

� �
ð13Þ

and the function G itself as

Gffi
2kBT

Jzs
IW�B0

m0H

Jzs

� �1=2
" #

þ
Jzs

6kBT
: ð14Þ

Henceforward we keep only the maximum field contribution
from ðm0H=JzsÞ1=2

51, since, in its turn, m0H=kBT ¼ ðm0H=JzsÞ�
ðJzs=kBTÞ5 ðm0H=JzsÞ1=2.

Thereafter the inverse function 1=G can be approximated as

1

G
ffi

Jzs
2kBTIW

1þ
B0

IW

m0H

Jzs

� �1=2

�
1

12IW

Jzs
kBT

� �2
" #

: ð15Þ
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