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a b s t r a c t

We using a variational method of Pekar type to study the ground-state transition probability of impurity
bound polaron with strong electron–LO-phonon coupling in a quantum rod (QR). Quantum transition is
happened in the low dimensional quantum system due to the electron–phonon interaction and the
impact of temperature. That is the polaron transit from the ground-state to the first-excited state after
absorbing a LO-phonon. We find the ground-state transition probability of impurity bound polaron
enlarger with increasing the transverse and longitudinal confinement lengths of QR and changes small
with enhancing the ground-state energy of impurity bound polaron. And the ground-state transition
probability of bound polaron is an increasing function of the electron–phonon coupling constant.

Crown Copyright & 2013 Published by Elsevier B.V. All rights reserved.

1. Introduction

In the last decade, with the developments in epitaxial technology,
such as molecular-beam epitaxy and nanothography, it becomes
possible to produce these systems, which are typified by hetero-
interfaces between the different semiconductors. Consequently opti-
cal properties of low-dimensional semiconductor systems have
received considerable research interest both experimentally and
theoretically. In practice, in a quantum rod (RD) system, the elec-
tron–phonon interactions are enhanced by the geometric confine-
ment. Therefore, some works on the electron–phonon interaction in
low dimensional quantum systems have been studied. Landau and
Pekar [1–4] researched the physical properties of polarons, in the
today's terminology these first studies were all devoted to the
strong-coupling theory. An improved model of electron–phonon
interaction for longitudinal-optical phonons in layered semiconduc-
tor quantum wells was studied by Wendler [5]. Xiao et al. [6]
calculated the coulomb bound potential quantum rod qubit, which
is strongly coupled to LO-phonon, by using the variational method of
Pekar type. Verzelen et al. [7] investigated the polaron lifetime and
energy relaxation in semiconductor quantum dots. The results show
that a harmonicity driven instability of optical phonons leads in
semiconductor quantum dots to a decay of polaron states which
otherwise would be evenasting. Li et al. [8] recently studied the
ground-state lifetime of bound polaron by employing a variational
method of the Pekar type in a parabolic quantum dot. A Landau–
Pekar variational theory is employed to obtain the ground and the
first excited state binding energies of an electron bound to a coulomb

impurity in a polar semiconductor quantum dot with parabolic
confinement in both two and three dimensions by Chen et al. [9].
K.P. method is used to analyze the electronic structure and intraband
optical transitions in self-assembled in GaAs quantum rods in the
terahertz range by Prodanovic. Khamkham et al. [10] considering the
Landau–Pekar method to study the effect of a magnetic field on the
ground-state energy of a donor impurity confined in a polar CdSe
spherical quantum dot embedded in a nonpolar matrix. However, the
ground-state transition rate of impurity bound polaron in a QR has
not been considered so far in these studies.

The purpose of the present paper is to research the ground-
state transition probability of impurity bound polaron with strong
electron–LO-phonon coupling by utilizing a variational method of
Pekar type in a QR. The relations between the ground-state
transition probability of impurity bound polaron and the trans-
verse and longitudinal confinement lengths of QR, the ground-
state energy, the electron–LO-phonon coupling constant, and the
temperature parameter are discussed.

2. Theory

The electron moves in a polar crystal QR with three-dimensional
anisotropic harmonic potential. On the basis of the strong-coupled
polaron model, the electron–phonon system Hamiltonian with a
hydrogen-like impurity at the center can be described:

H¼HeþHphþHe−phþHC : ð1Þ

He ¼
p2∥
2m*

þ p2z
2m*

þVðρÞþVðzÞ: ð2Þ
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where V ðρÞ ¼ ð1=2Þmω2
∥ρ

2 and VðzÞ ¼ ð1=2Þmω2
z z

2 represent the
transverse and longitudinal anisotropic harmonic potentials in
the radius and the length directions of the QR, respectively.
P ¼ ðP∥,pzÞ and m* denote the momentum and mass of the
electron, respectively. The second and third terms in Eq. (1) stand
for the local LO-phonon field and the interaction energy of the
electron with the LO-phonon. They are given by

Hph ¼∑
w
ℏωLOaþ

w aw: ð3Þ

He−ph ¼∑
w
½V *

wa
þ
w expð−iw � rÞþh� c�: ð4Þ

where

V *
w ¼ i

ω

2πe2ℏωL

εV

� �1=2

, ð5Þ

α¼ e2

2ℏωLO

� �
2m*ωLO

ℏ

� �1=2
1
ε∞

−
1
ε0

� �
ð6Þ

here aþ
w ðawÞ indicates the creation (destruction) operator of the

bulk LO-phonons field with the wave vector w and r¼ ðρ,zÞ
represents the position vector of an electron, respectively. V plots
the volume of the QR. The electron–LO-phonon coupling constant
is expressed by α. The last term in Eq. (1) means the coulomb
bound potential between the electron and hydrogen-like impurity
which can be written as:

HC ¼ −
e2

ε0jrj
ð7Þ

Utilizing Fourier expansion to the coulomb confined potential,
it can be represented as:

−
e2

ε0jrj
¼−

4πe2

ε0V
∑
w

1
w2 expð−w � rÞ ð8Þ

We introduce the coordinate transformation, which changes
the ellipsoidal boundary into a spherical one [11]: x′¼ x,y′¼
y,z′¼ z=e′ where e′ shows the ellipsoid aspect ratio and (x′,y′,z′)
plots the transformed coordinate. The electron–phonon system
Hamiltonian in a new coordinate was changed to H′. And then
carry out Lee et al. [12] unitary transformation

U ¼ exp½∑
w
ðaþ

w f w−awf
*
wÞ�: ð9Þ

where f w and f *w are variational parameters which will subse-
quently be chosen by minimizing the energy. We have

H* ¼U−1H′U ð10Þ

The ground-state trial wave function [13] can be denoted

���ψ〉¼ π−ð3=4Þλ3=20 exp −
λ20ρ

2

2

" #
exp −

λ20z
2

2

" #���0ph〉 ð11Þ

where j0ph〉 denotes the zero phonon state and λ0 is the variational
parameter which will subsequently be determined by minimizing
the ground-state energy. We then obtain the polaron ground-state
energy E0 ¼ 〈ψ jH*jψ〉. Throughout this study, the length and energy
of polaron are taken in units of the polaron radius r0 ¼ ðℏ=2m*ωLoÞ1=2
and the phonon energy constant R* ¼ ℏωLO, the polaron ground-state
energy can be written as follow:

E0 ¼ ð1þ e′2

2
Þλ20þ

1

λ20l
4
p

þ 1

2λ20l
4
ve′2

−

ffiffiffi
2
π

r
αλ0Aðe′Þ−2

ffiffiffi
2

p
βλ0Aðe′Þ ð12Þ

lp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðℏ=m*ω∥Þ

q
and lv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðℏ=m*ωzÞ

p
are the transverse and

longitudinal confinement lengths, β¼ ðe2=ε0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m*=ℏπ

p
plots the

coulomb bound constant. Aðe′Þ is expressed as follows:

Aðe′Þ ¼

arcsin
ffiffiffiffiffiffiffiffiffi
1−e′2

pffiffiffiffiffiffiffiffiffi
1−e′2

p e′o1

1 e′¼ 1
1

2
ffiffiffiffiffiffiffiffiffi
e′2−1

p ln e′þ
ffiffiffiffiffiffiffiffiffi
e′2−1

p

e′−
ffiffiffiffiffiffiffiffiffi
e′2−1

p e′41

8>><
>>: ð13Þ

According to the Fermi golden rule, under the affect of the
temperature and the electron–phonon interaction, the ground-
state transition probability that the polaron transits from the
ground-state to the first-excited state after absorbing a LO-
phonon is given by

P ¼ αωLO

2λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m*ωLO

ℏ

r
Nwln

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ20þ2m*ωLO=ℏ

q
þλ0Þ2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ20−2m*ωLO=ℏ

q
−λ0Þ2

ð14Þ

In the light of quantum statistics, we get

Nw ¼ exp
ℏωLO

KBT

� �
−1

� �−1
ð15Þ

where the KB represents Boltzmann constant, and λ means the
ground state wave vector of impurity polaron, Eq. (15) should be
self-consistent with the Nw of Eq. (14). Moreover, we supposed
that ℏωLO=KBT ¼ γ denotes the temperature parameter and then
Eq. (15) is turns into Nw ¼ ½expγ−1�−1.

3. Results and discussion

The dependence of the ground-state transition probability of
impurity bound polaron on the transverse and longitudinal confine-
ment lengths of QR, the electron–phonon coupling constant, and the
ground-state energy of bound polaron are given in Figs. 1–4.

Fig. 1 illustrates the ground-state transition probability P of
impurity bound polaron as a function of the transverse confine-
ment length lp of QR for different coulomb bound constants
β¼ 0:1,0:5,0:7 and the longitudinal confinement length lv ¼ 2:5,
the aspect ratio of the ellipsoid e′¼ 0:5, the electron–phonon
coupling constant α¼ 6, and the temperature parameter γ ¼ 0:1.
It finds that the ground-state transition probability P of impurity
bound polaron increases with enlarging the transverse confine-
ment length lp of QR. That is because the movement of the electron
is confined because the existence of the confine potential in a QR.
With enhancing of transverse confinement length, the thermal
motion energy of electrons, which take phonon as medium,
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Fig. 1. The ground-state transition probability P of impurity bound polaron as a
function of the transverse confinement length lp for different Coulomb bound
constants in a QR.
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