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a b s t r a c t

Analytical solution for lattice and electron temperatures is presented for non-equilibrium energy

transfer in gold substrate subjected to a time exponentially decaying short-pulse heating. The finite Lie

point symmetries and similarity solution are incorporated in the analysis. Electron temperature

distribution obtained from the analytical solutions is compared to its counterpart predicted from the

numerical simulations. It is found that the rate of electron temperature decay in the surface region is

high, which in turn, results in high rate of lattice site temperature increase due to the collisional energy

transfer from the electron sub-system to the lattice-sub system.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Short pulse of heating of metallic surfaces results in thermal
separation of the electron and the lattice sub-systems. Thermal
communication in between both sub-systems gives rise to non-
equilibrium energy transport in the heated region. The collisional
process taking place between excited electrons and the lattice
sub-system governs the energy transfer from the electron sub-
system to the lattice sub-system. This process continues until the
thermal equilibrium is established between the sub-systems.
When the heating duration is comparable to electron relaxation
time, non-equilibrium energy transfer takes place through the
collisional process while dominating over the diffusional energy
transfer in the solid. In this case, the Fourier heating model fails to
describe the physical insight into heat transfer in the substrate
material. Consequently, the electron kinetic theory approach
incorporating the electron–lattice site collisions between the
lattice and electrons sub-systems becomes essential to account
for the formulation energy transport in the solids. Moreover, the
closed form solution for the governing equation of the physical
problem becomes fruitful, since it provides the functional relation
between the independent variables, such as time and space, and
the dependent variable, such as temperature. Although the
analytical approach giving the approximate solution for the
physical problem is obtained earlier [1], the solution presented
is limited in time and space scales due to the assumptions made
in the analysis. Consequently the general form of the analytical

solution for the non-equilibrium energy transport in the metallic
substrates due to short-pulse heating becomes essential.

Considerable research studies were carried out to examine short-
pulse heating of metallic surfaces. The effect of femtosecond laser
pulse trains on optical characteristics and non-equilibrium heat
transfer in thin metal films was studied by Sim et al. [2]. They
assumed that the electron–electron and electron–phonon collision
frequencies vary significantly with the number of pulses per train
and the separation time per pulse. Non-equilibrium modeling of
heat transfer in a powder layer subjected to a short-pulse heating
was presented by Zhang [3]. The findings revealed that the
non-equilibrium transport was significant when the pulse length
was of less than nanosecond duration. Laser short-pulse heating of
metal surface was modeled using molecular dynamics by Zhigilei
et al. [4]. They presented the condition leading to photomechanical
lamination of single or multiple layers. The contribution of the
D-band electrons to ballistic electron transport and interfacial
scattering in energy transfer in thin metal films was investigated
by Hopkins [5]. The ballistic component of electron transport,
leading to electron-interfacial scattering was studied through a
ballistic-diffusion approximation of the Boltzmann transport equa-
tion. The non-equilibrium properties of electrical and thermal
currents in metals were investigated by Huettner [6]. The results
indicated that Ohm’s law remained a good approximation in most
cases whereas the Fourier equation should be supplemented by a
relaxation term leading to the hyperbolic heat conduction equation.
The generation of acoustic oscillation by short pulses in metals was
studied by Afanasiev et al. [7]. They showed that heating by
electrons due to the inverse bremsstrahlung absorption by high-
power short-pulse laser radiation resulted in parametric generation
of non-acrostic waves. In addition Cherenkov generation of
non-equilibrium phonons resulted in suppression of the electrons
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heat flux and rapid solidification of the metal lattice. The effect of
electron phonon energy exchange on thermal pulse propagation in
semiconductors was examined by Gonzalez and Gurevich [8]. The
transient temperature of quasi-particle systems was calculated self-
consistently through incorporating the electron–phonon energy
interactions. Al-Qahtani and Yilbas [9], Al-Theeb and Yilbas [10]
and Yilbas et al. [11] studied laser short-pulse heating of metallic
surfaces after incorporating the electron kinetic theory approach.
The findings revealed that electrons and the lattice sub-system had
different temperatures due to the presence of non-equilibrium
energy transfer in the laser irradiated region. However, the model
studies were involved with the numerical solution of governing
transport equations.

The analytical solutions for hyperbolic heat conduction equa-
tion were presented earlier [9–11] and the main feature was the
solution of the Cattaneo equation with the appropriate boundary
conditions. However, short-pulse heating of metallic surfaces is
involved with non-equilibrium energy transfer in the lattice and
the electrons sub-systems. This requires the consideration of the
electron and the lattice sub-systems in the analysis. The approx-
imate solution of the two equation model was presented by
Pakdemirli and Yilbas [1] using the perturbation method.
However the analytical solution for electron and lattice tempera-
tures provided reasonable accurate solutions for the limited time
and space scales. This was because of the approximations made
for the first and zero order solutions. Therefore, an extension of
the previous study [1] is necessary for extended time and space
scales. Consequently, in the present study the closed form
solution for electron and lattice temperatures is presented incor-
porating the Lie point symmetries and similarity solution. The
kinetic theory approach is introduced to obtain the governing
differential equations for non-equilibrium energy transfer
between the electron and the lattice sub-systems. The governing
equations are non-dimensionalized prior to the closed form
solution.

2. Mathematical analysis

The electron kinetic theory approach considers the electron–
phonon collision mechanism through which the energy exchange
between the electrons and lattice site atoms occurs. The mathe-
matical model pertinent to electron kinetic approach is given in
the previous study [12,13]; hence, the resulting equation is given
here, i.e.
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When Eq. (1) is decomposed into two equations, the resulting
differential equations can be written as:
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The coefficients A–D can be calculated, i.e.
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where r, k, Cp, f, and l are density, thermal conductivity, specific

heat, fraction of electron energy transfer during a single collision,
and lattice mean free path, respectively. Eq. (2) is identical to the
equations given in the two-equation model, since the governing
equations in the two-equation model are [14]
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where TE and TL are the electron and lattice site temperatures, S is
the laser source term, and CE and CL are the electron and lattice
heat capacities, respectively. G is the electron–phonon coupling
factor, given by
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where me, N, V , and tp are electron mass, electron number
density, electron drift velocity and the electron mean free time
between electron–phonon coupling respectively. Consequently,
setting the coefficients of Eqs. (2) and (3), it yields
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where ts¼CE/G and CE¼gTe, where g is constant [15].
Moreover, the energy transport equations for electron and

lattice subsystems without source term can be written as [14]
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where TE and TL are the electron and lattice site temperatures
respectively. CE is the electron heat capacity, CL is the lattice heat
capacity, G is the electron–phonon coupling factor and k is the
thermal conductivity. x is the dimensional lattice depth and t is
the dimensional time.

If the dimensionless quantities are defined as
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Eqs. (1) and (2) reduce to the following form:
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In the above formulation, d¼1/l and l is the mean free path of
electrons. The model admits the following Lie point symmetry
[1]:
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Parameters a–c represent finite Lie point symmetries, whereas
(yE,yL)¼(f,g) is an arbitrary solution for the system [15]. A similarity
solution can be constructed using the parameter b and selecting
a¼1 and c¼0.

So we can get a reduced system by using the symmetry
generator Y¼@/@xþb(@/@t), where the generator Y has a canonical
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