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a b s t r a c t

Lindemann's formula of melting is extended in terms of bulk modulus and Grüneisen parameter to study
the pressure dependence of melting temperature, Tm(P) of metals. The formalism is applied to study
Tm(P) of noble and transition metals, di-, tri- and tetravalent (Ag, Au, Cu, Mn, Mg, Zn, CD, In, Pb and Al)
metals over a wide range of pressures up to 12 GPa. The computed melting temperatures of the metals
under pressure using our semi-empirical relation is in good agreement with the experimental data.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Properties of metals under elevated conditions of temperature
and pressure are important for their thermo-physical characteriza-
tion. These are useful in the fields of material physics, geophysics
and astrophysics. Because of the lack of microscopic information
such as inter-atomic forces and atomic distributions, theoretical
calculations of the melting curves based on the first principle
theory lag behind. Given the complexities involved with experi-
mental and theoretical determination of melting temperature,
Tm(P) at high pressures, it is of considerable interest [1] to develop
empirical relations that can satisfactorily be used to determine
Tm(P) at high pressures. Such approaches are also useful to
extrapolate Tm(P) at high pressures from the available low pressure
data. Simon's semi-empirical equation has proved to be quite
successful for large varieties of substances, but the major difficul-
ties appear to be that of (i) uncertainty in fitting Simon's para-
meters and (ii) identifying the physical properties that are
responsible for the dependence of Tm in the higher pressure region.

A number of attempts were made in the past for the empirical
evaluation of the magnitude of Tm, the most famous and in
many ways most successful is that of Lindemann [2]. Lindemann's
picture of melting suggests that the amplitude of atomic vibra-
tions increases with increasing temperature and melting occurs
when the amplitude of vibrations reaches a critical fraction, ym, of
the mean atomic radius Ra. The quantity ym may readily be estimated
[3] with the aid of the Debye model in terms of characteristic
temperature θD. The critical value of ym has been found to vary

between 0.11 and 0.23 [4]. This has been successfully used to
evaluate the melting temperature of metals at normal pressure.

In the present work, a semi-empirical approach based on
Lindeman's concept is used to compute the melting point of
metals, Tm(P), over a wide range of pressures. We have reformu-
lated Lindemann's formula to compute Tm(P) in terms of bulk
modulus, the Grüneisen parameter and their first derivative with
pressure. All these factors can be independently determined and
hence the formalism is independent of any fitting parameter. It has
also been applied [5] successfully to evaluate the pressure depen-
dence of the melting of minerals and rocks such as alumina,
Heusler alloy and gabbro. Under the simplified version of the
formalism, Simon's empirical constants have been readily related
to the bulk modulus and the Grüneisen parameter. We have
applied the formalism to compute Tm(P) of Ag, Au, Cu, Mn, Mg,
Zn, Cd, In, Pb and Al. These metals differ quite substantially in their
melting points at atmospheric pressure. Recently Errandonea [6]
has measured the melting curves for metals up to 12 GPa using
Bridgman-type cell which has made it possible to compare our
semi-empirical values with the measured values.

Formalism leading to the modified version of Lindemann's
expression in terms of bulk modulus and the Grüneisen parameter
is given in Section 2. Results and discussions for the pressure
dependence of the melting temperature of ten metals are given in
Section 3, followed by summary and conclusion in Section 4.

2. Theoretical formulation

It was proposed by Lindemann [2] that the amplitude of the
atomic vibrations increases with increasing temperature and that
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melting occurs when the amplitude of vibrations reaches a critical
fraction, ym, of the mean atomic radius Ra. Lindemann's original
formula, in association with the approximate expression of Mott
and Jones [3] for the mean square amplitude of vibration of each
atom, can be written in the form:

Tm ¼ 2π
3h

ymRaθD

� �2

MkB ð1Þ

where θD is the Debye temperature and M is the atomic mass.
θD occurs as one of the important ingredients in Eq. (1). It is very
useful to characterize the atomic vibrations in solids [7] as well as
in liquids [8]. It may be noted that if the observed specific heat
data at low temperature is exactly fitted to the Debye formula,
then θD is constant. Mott and Jones [3], however, argued that for
vibrational distribution other than Debye distribution, θD should
depend on temperature, T, and pressure, P.

On replacing Ra½ ¼ ð3M=4πρÞ1=3� and M in Eq. (1), one gets

Tm ¼ const Ω2=3θ2D ð2Þ

where Ω is the atomic volume. Taking the pressure derivative of
the above equation

dðlnTmÞ
dP

¼ 2
BT

ξ−
1
3

� �
ð3Þ

where the bulk modulus BT ¼ −Ωð∂P=∂ΩÞT and the Grüneisen
parameter, ξ¼−ð∂ðlnθDÞ=∂ðlnΩÞÞ. BT and ξ in Eq. (3) are pressure
dependent. For the need of a better analytical expression for BT(P)
and ξ(P), it can be expanded in terms of P:

ξðPÞ ¼ ξ0þa1Pþa2P
2þ⋯ ð4Þ

BTðPÞ ¼ B0þb1Pþb2P
2þ⋯ ð5Þ

ξ0 and B0 are the values at normal melting point and at zero
pressure (atmospheric pressure). Taking into account the linear
terms of Eqs. (4) and (5), one can readily solve Eq. (3) to get

Tm

T0
¼ 1þ b1P

B0

� �n
exp

2a1P
b1

� �
ð6Þ

with

n¼ 2b1ξ0−2a1B0

b21
−

2
3b1

, a1 ¼
∂ξ
∂P

� �
and b1 ¼

∂B
∂P

� �
ð7Þ

Eq. (6) suggests that the basic inputs to calculate Tm(P) are the bulk
modulus, the Grüneisen parameter and their derivatives with pressure.
Experimental values of the bulk modulus are amply available for a
large group of metals. However, very few data exist for ξ and its
pressure gradient. In its absence, the coefficient can even be treated as
a fitting parameter. On the other hand some of the existing measure-
ments [9,10] indicate that the dependence of ξ on P is very small. If we
take a1¼0, then Eq. (6) simplifies considerably to

Tm

T0
¼ 1þ b1P

B0

� �2=b1ðξ0−ð1=3ÞÞ
ð8Þ

Eq. (8) is a simplified version to compute the pressure dependence of
melting temperature subjected to the condition that the bulk modulus
of the material depends linearly on pressure and the Grüneisen
parameter remains invariant.

It is of interest to compare Eq. (8) to one of the most important
and extensively used Simon's empirical relations:

Tm

T0
¼ 1þ P

X

� �Y
ð9Þ

It suggests that Simon's constant X and Y can readily be related to
bulk modulus and the Grüneisen parameter respectively as

X ¼ B0

b1

� �
, and Y ¼ 2

b1
ξ0−

1
3

� �
ð10Þ

Eq. (6) or its simplified version Eq. (8) can be readily used to
evaluate the melting temperature with increasing pressure
provided the bulk modulus, the Grüneisen parameter and their
gradients with pressure are known. Most of these physical para-
meters have been determined experimentally. However, the data
for the Grüneisen parameter is scarce, and in that case we have
determined it from the thermodynamic relation [11]:

ξ0 ¼
β

ρ cPκS
ð11Þ

where β (K−1) is the coefficient of volume expansion, ρ (kg m−3)
is the density and CP (J kg−1 K−1) is the heat capacity at constant
pressure. The values of these quantities are taken from [12,13]. The
adiabatic compressibility, κS (Pa−1), appearing in Eq. (11) is
determined from the relation:

κS ¼
1

ρðv2p −ð3=4Þv2s Þ
ð12Þ

vp and vs are the primary (longitudinal) and secondary (trans-
verse) acoustic wave velocities respectively.

3. Results and discussions

Below we present the pressure dependence of the melting
curves of ten metals obtained from semi-empirical Eq. (8). Results
are compared with the experimental data available in literature [6].

3.1. Noble and transition metals (Ag, Au, Cu and Mn)

Silver, copper and gold share certain attributes like having one
s-orbital electron on top of a filled d-electron shell and possessing
high ductility and electrical conductivity. Inter-atomic interactions
in these elements are slightly contributed by the filled d-shells
compared to the dominant contributions from the s-electrons
through metallic bonds. This explains their low hardness and high
ductility. Tm for Ag, Au and Cu at atmospheric pressure are
respectively, 1234.78 K, 1337.18 K and 1357.62 K, which are com-
paratively higher than those for the other metals.

At the macroscopic scale, introduction of extended defects in
Cu to the crystal lattice, such as grain boundaries, hinders flow of
the material under applied stress thereby increasing its hardness.
For this reason, copper is usually supplied in a fine-grained
polycrystalline form, which has greater strength than mono-
crystalline forms. It has the ability to remain in a face centered
(fcc) structure up to pressures higher than 100 GPa. Contrary to
noble metals, Mn is chemically reactive, harder and brittle.
Its melting temperature, Tm¼1497 K, is quite high at atmospheric
pressure. Due to its reactive nature it has large industrial applica-
tions. Contrarily, gold is chemically one of the least reactive solid
elements. The metal therefore occurs often in free elemental
(native) form, as nuggets or grains in rocks, in veins and in alluvial
deposits. Silver has large industrial applications due to its high
electrical and thermal conductivities. It is very ductile, malleable
(slightly higher than gold), monovalent coinage metal, with
a brilliant white metallic luster that can take a high degree of
polish.

We have applied Eq. (8) to compute Tm(P) for Ag and Au for
pressures up to 8 GPa and for Cu up to 16 GPa. The computed
values are plotted in Fig. 1(a–c). The bulk modulus B, its first
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