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a b s t r a c t

Using the finite-difference method within the quasi-one-dimensional effective potential model and

effective mass approximation, the ground-state binding energy of hydrogenic shallow-donor impurity

in wurtzite (WZ) (In,Ga)N/GaN parabolic transversal-section quantum-well wires (PQWWs) subjected

to external electric field is investigated. An effective radius of a cylindrical QWW describing the

strength of the lateral confinement is introduced. The results show that (i) the position of the largest

electron probability density in x–y plane is located at a point and it is pushed along the negative sense

by the electric field directed along the positive sense, (ii) the ground-state binding energy is largest for

the impurity located at this point and starts to decrease when the impurity is away from this point, (iii)

the ground-state binding energy decreases with increase in the external electric field and effective

radius, and (iv) the Stark-shift increases with the increase of the external electric field and the effective

radius.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

With the development of experimental techniques and analy-
tical methods, there has been a considerable amount of work
devoted to study of the hydrogenic impurities-related electric
properties in low-dimensional semiconductors heterostructures
such quantum well (QW), quantum well wire (QWW) and
quantum dot (QD) [1–16]. It is important to understand the
electric and optical properties of impurities because the optical
and transport properties of devices made from these materials are
strongly affected by the existence of the hydrogenic impurities
[2–7,17].

There are a number of studies concerning hydrogenic impu-
rities in QWWs under external fields which are an interesting
probe for studying the physical properties of low-dimensional
systems both from theoretical and technological points of view.
Dalgic and coworkers [18,19] have investigated the electric field
effect on the non-hydrogenic binding energy of shallow donor
impurity in a square and cylindrical GaAs/(Ga, Al)As QWW. In the
same sense, Aktas and coworkers [13,14] have estimated the
binding energy of shallow donor impurity under both electric and
magnetic fields in a coaxial GaAs–Ga,AlAs QWW. These authors
have calculated the binding energy as a function of the impurity

position and barrier thickness for various values of electric and
magnetic fields. An and Liu [20] have investigated the properties
of hydrogenic impurities in a parabolic GaAs QWW in the
presence of magnetic field. The analytical calculation of the
eigenstates of QWWs is complicated or insoluble even due to
the existence of the Coulombian potential and two-dimensional
confinement. To overcome this problem, several numerical meth-
ods are suggested and adopted by different authors such the finite
element method, the plane wave expansion, the variational
method, the potential morphing method and the finite-
difference method.

In this paper, based on the finite-difference method adopted in
different works [21,22,23] and quasi-one-dimensional effective
potential model, the calculation of the ground-state shallow
donor binding energy in QWWs with lateral parabolic potential
and electric field perpendicular to the z-axis growth direction is
investigated.

2. Theoretical formalism

We consider that the hydrogenic shallow donor impurity is
located at (xi,yi) in the (x,y)-plane which constitutes the lateral
surface of parabolic quantum-well wire (PQWW) made out of WZ
InnGa1�nNand surrounded by GaN barriers. In this situation, the
electron is free to move in the z-axis longitudinal direction and is
confined by parabolic lateral confinement along x-axis and y-axis.
The effective-mass Hamiltonian of an electron in PQWW in the
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absence of the hydrogenic impurity for an electric field parallel to
the x-axis can be expressed as follows:

H0 ¼�
_2

2mn
Dþ
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2
mno2

0 x2þy2
� �

þ9e9Fx ð1Þ

e and mn are the electron charge and the electron effective-mass
respectively, o0 is the harmonic oscillator frequency and F40 is
the electric field.

In the linear approximation, the effective-mass in the PQWW
is given as:

mn

InGaN ¼ nmn

InNþ 1�nð Þmn

GaN ð2Þ

By adopting the effective Bohr radius (EBR) an ¼ en_2=mne2 for
the length unit, the effective electron Rydberg Rn

¼e2/2enan as the
unit of the energy and Fn

¼e/enan2 as the unit of the electric field,
the Hamiltonian (1) can be expressed as:
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re is defined as the oscillator length which is given as:

re ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
_
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s
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For a fixed finite parabolic potential o0, the value of the
oscillator length can be modulated by the Indium fraction in
the QWW.

In Eq. (3), r measures the electron distance from the origin of
the wire along the z-axis under the electric field. It is given as:

r¼
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We notice that the lateral confinement effect scales as1=re
4. It

is also indicated that the confinement potential depends strongly
on re, i.e., the smaller the re, the stronger the lateral confinement.
Therefore, re is defined as an effective radius of the QWW cross
section which is used to describe the lateral confinement
in PQWW.

By solving the Schrodinger equation in cylindrical coordinates:

_
H0c0 r,yð Þ ¼ E0c0 r,yð Þ ð6Þ

The exact solution has been obtained in this situation which
leads us to the ground-state wave-function and energy. They are
given respectively as:
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In the presence of the hydrogenic shallow-donor impurity, the
Hamiltonian described in Eq. (3) becomes:
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en is the mean dielectric constant and ri is the electron–impurity
distance in which xi and yi are the coordinates of the impurity in
the PQWW. They are given as:

ri ¼
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en InnGa1-nNð Þ ¼ n:eInNþ 1�nð ÞeGaN ð11Þ

In this problem, there is no exact solution for the combination
of parabolic confinement potential and Coulombian interaction.
However, in the present situation we have adopted the same
method used in Ref. [24] in which the authors have proposed an
analytical 1D formula for the effective interaction potential
between confined carriers. For a bound electron-hole pair exciton

in a parabolic quantum wire, the obtained ground state energy
using the analytical 1D formula is very close to the exact one. So,
the calculation of the eigenstates in 1D model is solved exactly
with the effective interaction potential in this case. Then, it is
permissible to replace the Colombian potential with the effective
potential energy Veff(z) [24]. Within this approximation, in the
cylindrical coordinates the Hamiltonian can be separated as
follows:

H¼H?þH== ð12Þ

H?is the perpendicular Hamiltonian which is the same as one
given in Eq. (1) (H?¼H0) and H// is the parallel Hamiltonian given
as:

H== ¼�
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The effective potential energy Veff(z) is defined as:

Veff zð Þ ¼
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This integral is calculated as in Ref. [24] by replacing the
lateral probability density (9c0(x,y)92) and the Coulombian poten-
tial by their Fourier transforms and integrating over the trans-
verse coordinates and transverse momenta. Then, the effective
potential energy becomes:
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J0 is the zeroth order Bessel function and 9c0(x,y)92is the
electron ground-state probability density without the presence
of the impurity in the QWWs. Using Eq. (7), one can obtain:
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The eigenvalues of the Hamiltonian given in Eq. (13) can be
obtained using the finite-difference method on a one-dimensional
mesh. The ground state energy with the presence of the impurity
is:

EI ¼ E0þE== ð17Þ

And then, the ground state binding energy is obtained as
follows:

Eb ¼ E0�EI ¼�E== ð18Þ

3. Results and discussion:

It is well known that the electron–impurity distance is the
main parameter which affects the binding energy strongly. To
clarify the binding energy dependency, it is necessary to study the
electron probability density without the presence of the impurity.
For In0.2Ga0.8N, the effective units used in this paper are
an
¼2.80 nm, Rn

¼26.65 meVand Fn
¼0.18 MV/cm.

In Fig. 1(a), we present the ground-state probability density of
electron in (x,y)-plane without the impurity in the QWW. One can
see that 9c0(x,y)92 diminishes slightly and moves along the x-axis
as a function of the electric field directed along the x-axis. It is
clear that its amplitude is less affected than its displacement
along the electric field axis. The larger the electric field is, the
more the displacement is marked and its maximum is obtained at
a point. To clarify the effective radius effect, we have plotted in
Fig. 1(b) the combined effect of effective radius and electric field.
We have only taken account of this later to separate the prob-
ability densities curvatures along the x-axis. It is shown that
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