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Nowadays broadband vibration energy harvesting using piezoelectric effect has become a research
hotspot. The innovation in this paper is the widening of the resonant bandwidth of a piezoelectric
harvester based on phononic band gaps, which is called one-dimensional phononic piezoelectric
cantilever beams (PPCBs). Broadband characteristics of one-dimensional PPCBs are analyzed deeply and
the vibration band gap can be calculated. The effects of different parameters on the vibration band gap
are presented by both numerical and finite element simulations. Finally experimental tests are
conducted to validate the proposed method. It can be concluded that it is feasible to use the PPCB
for broadband vibration energy harvesting and there should be a compromise among related
parameters for low-frequency vibrations.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Power consumptions of wireless sensor nodes are becoming
smaller and smaller with the development of advanced micro-
electronic technologies [1]. Thus energy harvesting has been
looked at as a promising way for independent power supplies
for micro-sensors in the future, which often converts ambient
energy (e.g. wind, thermal and vibration) into electric energy.
In particular, piezoelectric vibration energy harvesting (VEH) has
some unique advantages of large force-electric coupling coeffi-
cient and power density, less electromagnetic inference and easy
integration, and so it has been studied widely [2-4].

Classical piezoelectric VEH methods are mostly based on
cantilever beam configurations and second-order linear equations
are used to describe their dynamical characteristics. Studies have
exposed that their power outputs will reach the peak values only
at the resonant frequency. Otherwise, they will drop dramatically
[3,4]. As we all know, the main natural frequency of a linear
piezoelectric cantilever beam is just a single frequency, and so its
resonant bandwidth is very small. However, in the vast majority
of cases the ambient vibrations have their energy distributed over
a wide spectrum of frequencies, with significant predominance
of low frequency components (e.g. 20 Hz-200 Hz). Linear VEH
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devices are difficult to match broadband vibrations and their
efficiencies will always be low. To date, many methods have been
studied to solve this problem and they can be divided into two
classes. The first one is to adjust the resonant frequency of a
single harvester so that it can match the main frequency of the
ambient vibration at all times. Peters et al. [5] proposed a
tunable resonator by mechanical stiffening of the structure using
piezoelectric actuators. The other one is to design a broadband
harvester directly. Typically nonlinear piezoelectric VEH devices
have been considered as a promising way of broadband VEH in
recent years [6-9]. By now, these two methods have been
testified by both analytical and experimental results.

Phononic crystals (PCs) have become a research hot-spot in
condensed matter physics fields recently. PCs are periodic struc-
tures composed of at least two classes of elastic material.
A peculiar feature of PCs is called as ‘band gaps’. Band gaps are
defined as frequency intervals where elastic waves are forbidden
from propagating. The propagation characteristics of elastic
waves can be controlled by artificially designing the structures
of PCs. Thus PCs possess rich novel physical properties and
promising applications [10-12]. In particular, band gaps in
periodic elastic structures can make them extremely appealing
as broad mechanical filters. Then energy in vibrations will localize
in the form of an oscillatory motion of the internal structural
elements, so that the piezoelectric effect can be exploited to
convert the localized vibration energy into electrical energy.
Interestingly, this idea is exactly consistent with the need for
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Fig. 1. Diagram of a one-dimensional PPCB.

broadband VEH, and so PCs can be used for broadband VEH.
Wau et al. [13] studied noise energy harvesting based on PCs and
testified its feasibility by experimental results. However, little
work has been done on broadband VEH based on PCs. The novelty
of this paper is to deeply study the broadband characteristics of
VEH using one-dimensional phononic piezoelectric cantilever
beams (PPCBs). Effects of different parameters on the bandwidth
of one-dimension PPCBs are analyzed by theoretical analysis and
experimental results. Our main motivation is to provide theore-
tical guidelines for optimal designing of one-dimensional PPCBs
in engineering applications.

2. Theoretical analysis on the bandwidth of a one-
dimensional PPCB

2.1. Mechanisms statement

The diagram of a one-dimensional PPCB is shown in Fig. 1.
It can be built by sticking PZT patches and metal masses on the
elastic base periodically. The basic element of the PPCB is called as
‘unit cell’ and its length is denoted as a. The weight of each mass
is denoted as m. Here PZT-5H piezoelectric material is used.

Mechanical vibrations can be physically looked at as a special
kind of elastic waves. Vibrations will propagate along the one-
dimensional PPCB when excited. Then an energy band will be
generated due to its periodic structure, where the frequency
range without dispersive curves is named as band gap or vibra-
tion band gap [9]. Vibrations falling in the band gap will be
forbidden to propagate. Also vibration energy cannot be dissi-
pated, so they have to localize in some unit cells of the one-
dimensional PPCB. Thus PZT patches on these cells will become
good energy absorbers and can be used to convert localized
vibration energy into electrical energy based on piezoelectric
effects. In this way, broadband VEH can be achieved. In this sense,
vibration band gaps of one-dimensional PPCBs can be looked at as
resonant bandwidths of VEHs.

2.2. Analytical calculation of vibration band gaps

In this section the transfer matrix method is used to calculate
vibration band gaps of one-dimensional PPCBs [14]. The horizon-
tal and vertical axes in Fig. 1 are defined as the x-axis and z-axis
respectively. The vertical displacement of each mass along the
x-axis is denoted as u(x,t). When a is far larger than the size
of each mass (e.g. at least five times), each unit cell in the one-
dimensional PPCB can be looked as an Euler-Bernoulli beam.
Then the flexural elastic wave propagation equation along the
x-axis can be written as
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where p—the equivalent density, E—the equivalent elastic modulus,
A—the cross sectional area of the beam (A=b x h), and I—the
moment of inertia (I=bh?/12).

Denoting u(x,t)=Y(t)p(x) based on the separated-variable
method, Eq. (1) can be transformed into Eq. (2).
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Obviously, the left part of Eq. (3) is just the function of x, while
the right part is just the function of t. Thus Eq. (3) will be valid
only when both parts are equal to the same constant, i.e.,
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where A is a constant.
Denoting o = A2, /El/m, Eq. (4) can be transformed into Eq. (5).
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The solution of the second equation in Eq. (5) can be written as
Y(t) =A;coswt+A;sinwt (6)

where the coefficients of A;, A, can be calculated using initial
conditions.

Let ¢(x)=pfe™, we can derive the eigenfunction of Eq. (5) as
J*=A*% Its four roots are A=+ A, A= +jA. Thus the general
solution of ¢(x) can be expressed as follows:

@(x) = f1c0sAx+ f3,5inAx+ fycoshAx+ ,sinhAx )

where the coefficients of f8; (i=1,2,3,4) can be calculated by two
boundary conditions of each unit cell.

For the nth unit cell, the solution of Eq. (1) can be expressed as
Eq. (8) by combining Eq. (6) and Eq. (7).

u(x;,t) = AT cos(axy) + Ay sin (ox))
+B,f cosh(ox;,) + B, sinh(0x},)] (8)

Similarly, the solution of Eq. (1) for the (n+1)th unit cell can
be expressed as Eq. (9).

u (X;w 1 't) = eir:)t[A:+ 1€0S (ax;wr 1 ) +A;+ 1 Sin(ax;w 1 )
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where o*=pAw?[El, X, =X—Xn, X, ; =X—Xn41. Xp is the x-axis
coordinate of the nth unit cell. x,, is the x-axis coordinate of
the (n+1)th unit cell. A}, A, B, B, are elastic wave parameters
in the nth unit.
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