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a b s t r a c t

In recent experiments, the re-thermalization time of the mechanical resonator is stated as the limiting
factor for quantum applications of optomechanical systems. To explain the origin of this limitation, an
analytical nonlinear investigation supported by the recent successful experimental laser cooling
parameters is carried out in this work. To this end, the effects of geometrical and the optical
nonlinearities on the squeezing are studied and are in a good agreement with the experimental results.
It appears that highly squeezed state are generated where these nonlinearities are minimized and that
high nonlinearities are limiting factors to reach the quantum ground state.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Squeezing is a beautiful quantum phenomenon with amazing
potential applications [1,2] of which the most recent are con-
nected with continuous variables quantum information [3,4] and
ultrasensitive measurement of weak perturbations as the gravita-
tional waves [5–7]. Squeezed states are nonclassical states in
which the variance of at least one of the canonical variables is
reduced below the noise level of zero point fluctuations. To
generate squeezed states, the common technique consists to use
an optical cavity filled with a nonlinear Kerr medium which is fed
with an external pumping field [8]. With the recent advances in
cooling techniques for nano scale optomechanical systems, various
setups have been designed for quantum ground state engineering
of mechanical mirrors with highly squeezed states of light [9–14].
Indeed, with such technique it is now possible to obtain effective
phonon number less than 1 [15–20]. The limiting factors to obtain
much lower phonon number are the re-thermalization time of the
mechanical resonator τth ¼ ℏQm=kBT (where ℏ is Planck's constant,
Qm is the mechanical quality factor, kB the Boltzmann constant and
T is the temperature of the support), which competes with the
cooling, and the ubiquitous phase noise of the input laser which
can create a discrepancy between experimental results and theo-
retical prediction [15,16]. Nevertheless, a lot of theoretical studies
on the subject has been carried out in the last decade and several
proposals have been produced [21–23]. In Ref. [23] we applied the

technique of back-action cooling to show that the cooling of the
nanomechanical oscillator to its ground state is limited by the
effects of both optical and mechanical nonlinearities.

In this paper, by using the parameters of the experimental laser
cooling of Ref. [15], we extend the previous treatment to show
through analytical study that there are the nonlinearities which
limit the squeezing in optomechanics. The first one which depends
on the geometry of the mechanical structure is known as the
geometrical nonlinearity derives from the nonlinear dynamics of
the beams [24–26]. The second one is the optical nonlinearity
which appears as a nonlinear phase shift [10]. The geometrical
nonlinearity which is always present and not negligible in nano
resonators, is shown to be a limiting factor to reach the quantum
ground state as suggested in Ref. [26]. In the same way, it is shown
that high absolute values of the optical nonlinearity limit the
squeezing of the output intensity.

The paper is structured as follows. Section 2 will set the stage
for exploring the dynamics of our system, deriving in particular
the nonlinear Quantum Langevin Equations and the linearized
equations of motion. Sections 3 and 4 subsequently make use of
numerical simulations to discuss the squeezing of the mechanical
and the optical output quadratures. Finally, we conclude with an
outlook of possible future directions.

2. Dynamics equations

We consider an optomechanical resonator described on Fig. 1 of
Ref. [15]. The dynamics equations of a mechanical oscillator coupled
to a driven cavity are usually derived from a single-mode
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Hamiltonian [12,23,24,27] as

€xm þ Γm _xm þΩ2
mxm−β″Ωm ¼ gMΩm

���αðtÞ���2 þ Fth
MxZPF

; ð1aÞ

_α ¼ i Δþ gM
xZPF

x
� �

−
κ

2

� �
αðtÞ−iεin þ ffiffiffi

κ
p

αin; ð1bÞ

xm and pm are respectively the dimensionless position and momen-
tum operators of the mechanical oscillator related to their counter-
parts operators of the nanobeam as x¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2MΩm

p
xm ¼ xZPFxm and

p¼ ℏ=xZPFpm, with ½xm; pm� ¼ 2i. The parameters gM ¼
ffiffiffi
2

p
ωcðxZPF=

d0Þ, d0, Ωm and εin are respectively the optomechanical coupling, the
cavity length, the mechanical frequency and the amplitude of the
input laser beam. The cavity decay rate and the mechanical damping
of the mechanical oscillator are respectively represented by κ and
Γm. The laser-cavity detuning is Δ¼ωℓ−ωc with ωc the optical cavity
mode frequency and ωℓ the laser frequency. The terms Fth and αin

represent the Langevin force fluctuations and the input laser
fluctuations respectively. The terms β″¼ ðβ′x2ZPFx3mÞ=Ωm and gMxmα
represent the mechanical and optical anharmonic terms respec-
tively. When the nanoresonator is subjected to a large displacement
amplitudes, it displays a striking nonlinearity β″ in its response. This
comes about because the flexure causes the beam to lengthen,
which at large amplitudes add a significant correction to the overall
elastic response of the beam [26]. The optical anharmonic term is
another kind of Kerr medium, which has a mechanical origin: the
radiation pressure induces a coupling between the position of the
doubly clamped flexural resonator and the phase–intensity of the
light beam, thus modifying the opticalpath known as the phase shift.

One can derived from the set of equations (1) the following
nonlinear quantum Langevin equations (QLEs) [23]:

_xm ¼Ωmpm ð2aÞ

_pm ¼−Ωmxm−Γmpm þ gMα
†αþ β″þ Fth ð2bÞ

_α ¼ iðΔþ gMxmÞ−
κ

2

h i
α−iεin þ ffiffiffi

κ
p

αin ð2cÞ

_α† ¼ −iðΔþ gMxmÞ−
κ

2

h i
α† þ iεn þ ffiffiffi

κ
p

αin† : ð2dÞ

By setting the time derivatives to zero in the set of nonlinear
equations (2), the stationary values of the position of the oscillator
and the amplitude of the cavity field are

xm ¼ 2
gM
Ωm

���α���2; ���α���2 ¼ 2κPin

ℏωℓ ðΔþ gMxmÞ2 þ
κ2

4

� � : ð3Þ

The values of x obey the following third order algebraic equation:

x3 þ 2ΔxZPF
gM

x2 þ ð4Δ2 þ κ2Þ x
2
ZPF

4g2M
x−

4κx3ZPFPin

ℏΩmωℓgM
¼ 0: ð4Þ

From Eqs. (3) and (4), it appears that both α and xm increase when
the input laser power Pin increases.

Using the experimental parameters of Ref. [15] at the detuning
of Δ¼Ωm and for Pin ¼ 1 mW, we obtain the following values of x
which are in the range of those obtained experimentally in Refs.

[14,17]: 1:28� 10−13, −1:09� 10−8 þ 7:43� 10−10i, −1:09� 10−8−
7:43� 10−10i. The first solution, which is real and small, corre-
sponds to the stable regime of the mechanical resonator, while the
two conjugate others, which have the same module

(
���x���≈1:09� 10−8), correspond to the unstable regime.

For
���α���⪢1 (satisfied in Ref. [15]), the above QLEs can be

linearized by expanding the operators around their steady states:
xm ¼ xm þ δxm and α¼ α þ δα. By introducing the vector of quad-
rature fluctuations uðtÞ ¼ ðδxmðtÞ; δpmðtÞ; δIðtÞ; δφðtÞÞT and the vector

of noises nðtÞ ¼ ð0; FthðtÞ;
ffiffiffi
κ

p
δIinðtÞ; ffiffiffi

κ
p

δφinðtÞÞT , where δI¼ ðδα† þ δαÞ,
δφ¼ iðδα†−δαÞ are the intracavity quadratures of the intensity and the

phase , and the corresponding hermitian input noise operators δIin ,
δφin, the linearized dynamics of the system can be written in a
compact form

_uðtÞ ¼ AuðtÞ þ nðtÞ; ð5aÞ
with

A¼

0 Ωm 0 0
Ωmðβ−1Þ −Γm G 0

0 0 − κ
2 − ~Δ

G 0 ~Δ − κ
2

0
BBBB@

1
CCCCA: ð5bÞ

The higher order of fluctuations are safely neglected. The linearized
QLEs show that the mechanical mode is coupled to the cavity mode
quadrature fluctuations by the effective optomechanical coupling

G¼ gM
���α���, which can be made large by increasing the input laser

power Pin. β¼ ð3β′x2ZPFx2mÞ=Ω2
m and ~Δ ¼Δþ gMxm denote the dimen-

sionless geometrical nonlinearity and the effective detuning respec-
tively. The range values of the geometrical and optical nonlinearities
are given in Table 1. One remarks that β and η increase when xm
increases and they reach their maximum values at the detuning
Δ≈Ωm. As expected in Table 1, the optical and the mechanical effects
are respectively highly pronounced at the optical (Δ≈0) and the
mechanical (Δ≈Ωm) resonances [12]. This leads us to investigate the
squeezing at this particular sidebands.

3. Squeezing of the mechanical quadratures

The dynamics of mechanical fluctuations is obtained by writing
Eqs. (5) in the Fourier space

BðΩÞuðΩÞ þ nðΩÞ ¼ 0; ð6aÞ
where

BðΩÞ ¼

iΩ Ωm 0 0
Ωmðβ−1Þ ðiΩ−ΓmÞ G 0

0 0 ðiΩ− κ
2Þ − ~Δ

G 0 ~Δ iΩ− κ
2

� 	

0
BBBB@

1
CCCCA: ð6bÞ

Solving the matrix equation straightforwardly, we obtain the
solution for the mechanical displacement operator to be

χ−1eff ðΩÞδxmðΩÞ ¼ a1GΩm
ffiffiffi
κ

p
~Δ2 þ κ

4
2
−ω2 þ iκΩ

� �

� − ~Δδφin þ −iΩþ κ

2


 �
δIin

h i
þΩmFth; ð7Þ

where

a1 ¼ ~Δ2 þ κ

4
2
−Ω2Þ

2

þ κ2Ω2

 #−1
;

2
4 ð8Þ

Table 1
The range of values of the optical nonlinearity η and the geometrical nonlinearity β

at the detuning Δ¼ 0 and Δ¼Ωm respectively, using the parameters of Ref. [15].

Detuning
Δ

Mean displacement of the nanobeam
x (m)

Range of values of
nonlinearities

0 2.77�10−11 η∈½2:54� 10−3;6:79� 10−2�
7.42�10−10 β∈½7:87� 10−6; 5:72� 10−4�

Ωm 1.27�10−13 η∈½1:17� 10−5;1�
1.09�10−8 β∈½1:66� 10−10;1:22�
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