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We review the results of our recent numerical investigations on the electronic properties of disordered

two dimensional systems with chiral unitary, chiral orthogonal, and chiral symplectic symmetry. Of

particular interest is the behavior of the density of states and the logarithmic scaling of the smallest

Lyapunov exponents in the vicinity of the chiral quantum critical point in the band center at E¼0. The

observed peaks or depressions in the density of states, the distribution of the critical conductances, and

the possible non-universality of the critical exponents for certain chiral unitary models are discussed.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Two-dimensional disordered systems have been attracting
special attention for many years because d¼2 is the lower critical
dimension of the metal-insulator transition (MIT) [1]. For lattice
systems with orthogonal symmetry (random on-site disorder
with time reversal symmetry) all electronic states are localized
in the limit of infinite system size. However, for weak disorder
and energies close to the band center, the localization length can
become very large. On length scales smaller than the localization
length, the wavefunctions exhibit self-similar (fractal) beha-
vior [2]. The presence of spin dependent hopping changes the
symmetry of the model to symplectic, and enables the system to
undergo a metal–insulator transition at a certain value of the
disorder strength [3–7]. The critical eigenstates at the MIT exhibit
multifractal properties [8] and the localization length was
reported to show a parity dependence [9]. A strong magnetic
field turns the symmetry to unitary and induces critical states
[10], i.e., singular energies where the localization length of the
multifractal eigenstates [11,12] diverges, which are important for
the explanation of dissipative transport [13,14] in the quantum
Hall effect.

Two-dimensional (2D) models possessing an additional chiral
symmetry exhibit various electronic properties not observed in
the situations mentioned above. The chiral symmetry can be
found in models defined on bi-partite lattices with non-diagonal
disorder only [15,16]. Despite the disorder, the energy eigenva-
lues appear in pairs, En and �En symmetrically around the band
center E¼0 (for the definition of chiral 2D models, see Section 2).

Chiral symmetry implies unusual properties of the model in the
vicinity of the band center E¼0. For most chiral cases, the density
of states and the localization length are diverging and the band
center is a quantum critical point [17,18]. At zero temperatures,
an infinite sample is metallic at E¼0 but insulating for any non-
zero energy. The appearance of the criticality at E¼0 originates
from the chiral symmetry. However, the existence of the critical
point also depends on the boundary conditions. As listed in
Table 1, the sample exhibits chiral symmetry only for special
combinations of boundary conditions and parity. This boundary
and parity dependence of the sample’s length Lz and width L has
no analogy in ‘standard’ disordered models.

The special symmetry of the energy spectra may be accompa-
nied by a non-analytical behavior of the density of states (DOS) at
the chiral critical point [18,23–25]. In 2D chiral unitary models
defined on a bricklayer [26], which has the same topology as
graphene’s honeycomb lattice, the DOS exhibits a sharp drop near
the band center going to zero at E¼0 and depends on both disorder
and system size [27]. Contrary to this behavior, the DOS of the
chiral orthogonal system is finite at the band center and showing a
narrow extra peak in the case of square lattice samples (see below).

Similar to other critical regimes, systems with chiral symmetry
can be analyzed using the single parameter scaling theory [1].
However, the scaling parameter is not the ratio of the system size
L to the correlation length xðEÞ, but the ratio of the logarithm of
these parameters instead [28]

w¼ ln L

ln xðEÞ=x0
: ð1Þ

Also, the energy dependence of the correlation length is logarith-
mic [17,18,23]:

lnðxðEÞ=x0Þ � 9ln ðE0=9E9Þ9
k

, ð2Þ
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in contrast to the power-law scaling dependence xðEÞ � 9E�Ec9
�n

observed in non-chiral disordered systems. Thus, models with
chiral symmetry enable the detailed analysis of logarithmic
scaling, discussed previously in Ref. [28].

Chirality also strongly affects the transport properties of the
system. The non-Ohmic behavior of chiral systems with an odd
number of open channels, where the mean conductance decreases
much more slowly with the length of the system (see Fig. 1), has

been predicted theoretically [22] and confirmed numerically in
Refs. [26,29].

In this paper we review some results of our recent investiga-
tions on electric transport properties of two dimensional chiral
systems. In the following section we briefly introduce the models
studied. In Section 4, we summarize our findings for the Lyapunov
exponents, the critical conductance and its probability distribu-
tion, and show recent calculations for the density of states. Of
special interest is the scaling analysis of the diverging critical
electronic states at E¼0 [24,30,31].

2. Models

In the absence of diagonal disorder the single-band tight-
binding Hamiltonian defined on the sites n of a two-dimensional
bricklayer or square lattice with lattice constant a reads

H¼
X

/nan0S

tnn0c
y
ncn0 , ð3Þ

where the sum is over nearest neighbors only. The random
disorder is incorporated in the hopping terms, which also deter-
mine the symmetry of the problem. Square lattice and bricklayer
lattice differ only in the absence of every other vertical bond in
the latter and so the coordination number is reduced to three (see
Fig. 2).

2.1. Unitary symmetry

To describe a disordered chiral 2D system with broken time-
reversal symmetry, the hopping terms in the (transversal) x

direction are chosen to acquire complex phases and are defined as

tx ¼ t0eiyx,z;x 7 a,z , ð4Þ

where for a bricklayer lattice the phases yx,z;xþa,z ¼ yx,zþ2a;xþa,zþ2a

�ð2pe=hÞFx,z are determined by the total flux threading the
plaquette at (x,z)

Fx,z ¼
p

q

h

e
þfx,z: ð5Þ

Here, p and q are mutual prime integers and the magnetic flux
density perpendicular to the two-dimensional lattice B¼

ph=ðqe2a2Þ is described by the number p/q of magnetic flux
quanta h/e per plaquette 2a2. This differs from the random flux
model studied previously [32], where the constant magnetic field
part was absent. The random part is generated by the local fluxes
fx,z, which are uniformly distributed �f=2rfx,zr f=2 with zero
mean. The disorder strength f can be varied within the interval
from f=ðh=eÞ ¼ 0 to f=ðh=eÞ ¼ 1.

Table 1
Two dimensional models with non-diagonal disorder possess the chiral symmetry

only for special choices of the boundary conditions and the parity in the number of

sites. For a given combination of boundary conditions, periodic (P) and Dirichlet

(D), the chiral symmetry (Ch) and chiral symmetry with an extra eigenvalue at

E¼0 (Chþ) is observed [19–22].

Lz\ L Odd Even

Dx Px Dx Px

Odd Dz Chþ Dz Ch Ch
Pz Pz

Dx Px Dx Px

Even Dz Ch Dz Ch Ch
Pz Ch Pz Ch Ch

Fig. 1. The length dependence of the mean conductance /gS for quasi-one

dimensional chiral systems of length Lz and fixed width L¼ 65a. The energy is

E¼0. Due to the chiral symmetry of the model, the crossover from the Ohmic 1=Lz-

behavior (dotted line) to the 1=
ffiffiffiffiffi
Lz

p
dependence (dashed line) is observed, in

agreement with theoretical predictions [22]. Two models with chiral unitary (ChU:

f ¼ 0:25h=e) and chiral orthogonal (ChO: W=t0 ¼ 1) symmetry, defined in Section

2, were considered.

Fig. 2. The bricklayer lattice (left) shares the topology of the honeycomb lattice (right). The red lines display the attached perfect semi-infinite leads used in the calculation

of the scaling variables zi and the two-terminal conductance. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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