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a b s t r a c t

In this paper, fourth-order perturbation formulae of zero-field splitting (ZFS) parameter D and g-factors

g//, g? for ground state 3A2g of 3d8 ions in the trigonal crystal field (CF) have been derived by

perturbation theory method (PTM), and the complete energy matrices (45�45) including low

symmetry ligand field (C3v), Coulomb interactions and spin-orbital (SO) coupling interaction for 3d8

ions have been constructed, in the strong-field scheme. In these formulae, both the contributions from

the SO of the central 3d ion and the ligands taken into account by using the two SO coupling parameter

model, and the contributions to the ZFS from all excited states are included. These PTM formulae and

complete energy matrices are applied to investigate the EPR parameters D and g-factors for Ni2þ ions in

Al2O3 crystals unifiedly, and the calculated results of PTM and complete diagonalization method (CDM)

are not only close to each other but also in good agreement with the experimental data, and the local

structure of [NiO6]10� cluster is determined quantitatively. Furthermore, the validities of the present

formulae are tested further by the comparison of calculated results of the formula and these of CDM

based on intermediate –CF scheme, and the comparison shows that the calculated results with these

two different methods are in mutually good agreement with each other in all different trigonal crystal

environments, which also suggest that these fourth-order perturbation formulae are suitable for

explaining both D and g-factors for 3d8 ions in trigonally distorted octahedral field.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Doped-Al2O3 crystals with Ni2þ ions have been experimen-
tally studied by EPR [1,2] and optical spectroscopy [3] and
theoretically explained with PTM [4,5] and CDM [6,7]. The
calculated results by perturbation method [4] show that it is
unsuccessful to explain the experimental data of ZFS D and g-
factors g//, g? using second-order [8] perturbation formulae which
take only the nearest excited 3T2 level into account. Later, ‘quasi-
fourth-order’ perturbation formulae [5] are presented and used to
explain D and g-factors g//, g? of 3d8 ions in trigonally distorted
octahedral field. However, the validities of those ‘quasi-fourth-
order’ perturbation formulae which omit contributions from
some excited states are checked by CDM recently [6], and the
investigations indicate that the ‘quasi-fourth-order’ perturbation
formulae [5] work well for the g-factors ( g//, g?), but not for the
ZFS D parameters [6]. In addition, the PTM mentioned above are
established on conventional ionic model and the electron transfer
between the transition metal (TM) and ligand is ignored, thus,

only the contribution from SO coupling of the central TM ion is
included, and the covalence effect can only be introduced phe-
nomenally. In fact, both the contributions from the TM and
ligands, and the mechanism of the covalence effect to the D and
g-factors g//, g? are important [9] and can be included naturally, if
the two SO coupling parameter model are used in the molecular
orbital scheme, as showed below.

2. Theory and calculation

When the Ni2þ ions are doped into Al2O3 crystals, it usually
replaces Al3þ ions and the clusters of[ NiO6]10� with C3v point
group symmetry are formed. The CF potential of trigonal sym-
metry can be expressed as [10]
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in which, the first term is cubic part, and the second pare is
trigonal part, respectively. the relationship between the conven-
tional notations of CF parameters Ds, Dt and the Wybourne’s
notations are [11]
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And, the trigonal CF parameters n and n’ can be expressed as
[11]
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The physical Hamiltonian for trigonally distorted octahedral
field can be expressed as

Ĥ¼ Ĥ1ð10DqÞþĤ2 ðB, CÞþĤ3 ðDs, DtÞþĤ4ðx,z0ÞþĤZe

¼ ½Ĥ1ð10DqÞþĤ
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Where Ĥ1ð10DqÞ is the cubic CF, Ĥ
a

2ðB, CÞ and Ĥ
b

2ðB, CÞ are diagonal
part and non-diagonal part of the Coulomb interaction Ĥ2ðB, CÞ

term, respectively, B and C are the Racah parameters in crystal,
and Ĥ3ðDs, DtÞ is the trigonal CF, Ĥ4ðz,z

0

Þ is spin-orbit term, and
ĤZee is Zeeman term. Using Macfarlane’s strong field perturbation
method [12,13], fourth-order perturbation formulae of zero-field
splitting (ZFS) parameter D and g-factors g//, g? are derived as
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In the above formulae, D¼D
0

þD
00

, and D
00

is the term omitted
before [5]. If the k

0

¼k and z
0

¼z are taken in the above formulae,
the corresponding formula are equal to those ‘quasi-fourth-order’
in Ref. [5], except for the coefficient of the last term of g// in Eq.
(3) of Ref. [4] in which 12 is misprinted as 6, in addition, the zero
energy for the ground state W5 in Ref. [4] in which 9B is
misprinted as 2B obviously. Ei are the zeroth-order energy
denominations denoting the energy difference between the
ground and the excited states, and have following form

E1 ¼ Eða1A1gÞ2Eð3A2gÞ ¼ 16Bþ4C;

E2 ¼ Eða1EgÞ2Eð3A2g Þ ¼ 8Bþ2C;

E3 ¼ Eðb1A1gÞ2Eð3A2gÞ ¼ 18Bþ5Cþ20Dq;

E4 ¼ Eðb1EgÞ2Eð3A2gÞ ¼ 8Bþ2Cþ20Dq;

E5 ¼ Eða3T1gÞ2Eð3A2gÞ ¼ 3Bþ20Dq;

E6 ¼ Eða1T2gÞ2Eð3A2gÞ ¼ 9Bþ2Cþ20Dq;

E7 ¼ Eðb3T1gÞ2Eð3A2gÞ ¼ 12Bþ10Dq;

E8 ¼ Eð3T2gÞ2Eð3A2gÞ ¼ 10Dq;

E9 ¼ Eð1T1gÞ2Eð3A2gÞ ¼ 12Bþ2Cþ10Dq;

E10 ¼ Eðb1T2gÞÞ2Eð3A2gÞ ¼ 8Bþ2Cþ10Dq; ð10Þ

The molecular orbital (MO) of a single ion in the crystal system
are [14]
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and the corresponding SO coupling parameters z, z
0

, and orbital
reduction factors k, k

0

can be expressed as [14]
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in which, zd, zp are SO parameters of TM and ligand in free state,
respectively.

For Al2O3:Ni2þ , zd (Ni2þ)E649 cm�1 [15] and zp(O�)E
150 cm�1 [9]. The two SO coupling interaction matrices of z, z

0

within the trigonal basis can be written as

ð13Þ
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