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a b s t r a c t

Using the one band effective mass approximation model we computed the optical properties of the

spherical shaped CdSe/ZnS and Cdse/ZnSe core–shell quantum dot (CSQD). For each structure we

calculated the charge carrier energies and corresponding wave functions. We investigated the

dependence of the carrier energies on various parameters of the CSQD, including its size. Then we

calculated the radiative recombination lifetime for the two types of CSQDs nanocrystals. We found that

as the size of the dot is increased the optical gap of CSQD is reduced, resulting in a reduction in electron

energies and an increase in hole energies. We have shown that the radiative recombination lifetime in

the CdSe/ZnS and CdSe/ZnSe CSQDs decreased by increasing the shell thickness around the core of the

QD. We also showed that the radiative lifetime in the CdSe/ZnS is less than that in the CdSe/ZnSe CSQDs

and is sensitive to the size and nature of shell of the semiconductor’s material.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Recent progress on the synthetic chemistry of semiconductor
nanocrystals has made it possible to access high quality semi-
conductor nanocrystals with controlled size, shape and optical
properties. The low-dimensional semiconductor structures, such
as quantum wells (QWs), quantum wires (QWRs) and quantum
dots (QDs), have been applied in several areas.

In the semiconductor quantum dots, the electrons and holes
are confined within the width of semiconductor layer of low
energy gap which is surrounded by another semiconductor with a
higher band gap and is generally lattice matched with the
former [1]. The confinement of electrons and holes gives rise to
novel optical and electronic properties. These nanostructures
are popularly known as core–shell quantum dots (CSQDs). It has
been experimentally observed that such CSQDs exhibit improved
photoluminescence (PL) efficiency over that of the bare quantum
dots and the thickness of the shell provides further control
on optical and electronic properties of these QDs [2]. Application
of these quantum dots are found in the optical domain such as
QD Lasers [3], displays [4], optical communication and other light-
emitting devices [5,6] and for several biological purposes [7].

Due to their ease of preparation, high quantum yields and
tunable emissions in the visible range, CdSe QDs are undoubtedly

among the most promising materials used for the fabrication of
fluorescent thin films. Moreover, for better confined carriers in
CdSe QDs, the potential barrier and the band gap of passivation
material should be greater than those of CdSe. To this end, ZnS
and ZnSe are good candidates [8]. Thus we propose to investigate
and compare the optical properties of CdSe/ZnS and CdSe/
ZnSe CSQDs.

The electronic structure calculations of excitons are the key to
understanding the resulting optical properties and designing func-
tional nanodevices. Subsequently, numerous studies have been
reported using different methods and approximations [9,10].
In this paper, the description of the quantum confinement is based
on the framework of the effective mass approximation (EMA). In
strong confinement regimes (dot radius Rdot {exciton Bohr radius
aexc), EMA has been shown to be sufficient for understanding the
electronic structure of these low-dimensional systems [11–13].
Using the EMA model allowed calculating energies of electrons
and holes in CSQDs, these energies have been used to obtain
the optical gap, optical wavelengths and radiative recombination
lifetime for CdSe/ZnS and CdSe/ZnSe CSQDs.

In this paper, we have calculated the confinement energies
of electrons and holes and simulated the exciton ground state
energy spectrum. Particularly, we have studied the quantum size
dependent optical properties. We investigated the influence of
shell thickness on optical properties. In addition, we evaluated the
radiative recombination lifetime in the two types of CSQDs (CdSe/
ZnS and CdSe/ZnSe) and examined the core and shell size varia-
tions. The theoretical results have been compared and discussed.
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2. Theory and calculation

In this work, we have considered the system of an electron
confined in an isolated CdSe/ZnS and CdSe/ZnSe CSQD with inner
radius R1 and outer radius R2 shown in Fig. 1.

The effective mass approximation is used to model the CSQD,
which is assumed to be perfectly spherical. The core’s potential
is chosen to be reference zero point energy and the band gap of
ZnS or ZnSe is wider than that of CdSe, thus Vc40 [14]. In strong
confinement regimes, EMA has been sufficient for understanding
the electronic structure of these low-dimensional systems [15].
In most studies especially in the strong confinement regime [i.e.,
dot radius Rdot{exciton Bohr radius aexc], the Coulomb term is
completely ignored on comparing with the kinetic energy of
the electron and hole in the calculation [16]. In some cases,
although the Coulomb term is considered as a perturbation and
the first order energy modification is performed, the wave func-
tion is not modified [17]. In our study the Coulomb term has been
neglected and within this approximation method (EMA), the
Schrödinger equation for electron (hole) can be written as
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Here _ is reduced Planck constant, EeðhÞ the energy eigenvalue
and ceðhÞ

nlmðr,y,jÞ the electron (hole) eigenfunction, n is the principal
quantum number, and l and m are the angular momentum
quantum numbers. mn

ieðhÞ is the effective mass of electron (hole)
in the ith region and Vi,eðhÞðrÞ is the confining potential of electron
and hole. The effective mass and potential for electron and hole
are expressed as
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For spherically symmetric potential V(r) the separation of
radial and angular coordinates leads to

cn,l,mðr,y,jÞ ¼ Rn,lðrÞYl,mðy,jÞ

Rn,lðrÞ is the radial wave function, and Yl,mðy,jÞis the spherical
harmonics. For the spherical potential consists of three parts, the
radial eigenfunction Rn,lðrÞ consists of three parts too, according
to the position of the electron in the model. Consequently, to
calculateRn,lðrÞ, two cases must be considered. In the region where
E4Vc(e,h), the solution of radial wave function Rn,lðrÞis a linear
combination of spherical Bessel function Jl (x) and Newmann
functionZlðxÞ and is written as [17]
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As the wave function is limited when R-0, B¼0 because of the
divergence of Newmann function Zl when R vanishes. At the same
time the wave function has to vanish rapidly when r-1, namely:
Rnl,2ðR2Þ ¼ 0:

The two boundary conditions [18,19] that we will use, in
combination with previous results, leading to different results of
our research are

Rnl,1ðR1Þ ¼ Rnl,2ðR1Þ
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Normalization constants A–D can be found by normalizing the
wave function, which allows us to calculate the wave function and
eigenenergy.
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Fig. 1. Core shell QD model and its schematic diagram of potential. Fig. 2. Schematic energy band representation of CdSe/ZnS.

Table 1
Material parameters used in the calculations [20,21].

Materials mn
e mn

h Eg(eV) va

CdSe 0.13m0 0.45m0 1.75 4.95

ZnS 0.28m0 0.49m0 3.75 3.9

ZnSe 0.21m0 0.6m0 2.8215 4.09
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