Contents lists available at SciVerse ScienceDirect

Physica B

journal homepage: www.elsevier.com/locate/physb

Ab initio study of the structural, electronic, elastic and magnetic properties of Cu₂GdIn, Ag₂GdIn and Au₂GdIn

Saadi Berri^{a,*}, Djamel Maouche^b, Fares Zerarga^a, Youcef Medkour^a

^a Department of Physics, Faculty of sciences, University of Setif, Algeria

^b Laboratory for Developing New Materials and their Characterizations, University of Setif, Algeria

ARTICLE INFO

SEVIER

Article history: Received 31 December 2011 Received in revised form 31 March 2012 Accepted 5 April 2012 Available online 10 April 2012

Keywords: First-principle calculations Elastic constants Electronic structure Magnetic properties

ABSTRACT

We preformed first-principle calculations for the structural, electronic, elastic and magnetic properties of Cu₂Gdln, Ag₂Gdln and Au₂Gdln using the full-potential linearized augmented plane wave (FP-LAPW) scheme within the generalized gradient approximation by Wu and Cohen (GGA-WC), GGA+U, the local spin density approximation (LSDA) and LSDA+U. The lattice parameters, the bulk modulus and its pressure derivative and the elastic constants were determined. Also, we present the band structures and the densities of states. The electronic structures of the ferromagnetic configuration for Heusler compounds (X₂Gdln) have a metallic character. The magnetic moments were mostly contributed by the rare-earth Gd 4f ion.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Heusler compounds are ternary intermetallic compounds that have the general composition X₂YZ. In this class, X and Y represent d-electron transition metals, and Z denotes an spelectron element [1]. In recent years, Heusler compounds have been extensively studied, motivated by their gained importance due to advancements in spintronics [2-6]. In contrast to halfmetallic ferromagnets (HMFs) [7], only a few Heusler compounds (all of them with a rare earth metal at the Y position) have been successfully implemented as superconductors [8]. Pd₂YSn is the Heusler compound with the highest critical temperature (4.9 K) [9]. The coexistence of antiferromagnetism and superconductivity, demonstrating the manifoldness of the Heusler family, was reported for Pd₂YbSn [10] and Pd₂ErSn [11]. Many of the Heusler compounds have been reported to be HMFs [12,13], and several Co₂-based Heusler compounds have been used as electrodes in magnetic tunnel junctions [14,15]. The hexagonal compound Pd₂CeIn orders antiferromagnetically at 1.23 K [16]. D.B. de Mooij et al. [17] reported that Pt₂GdSn and Pt₂ErSn exhibit ferromagnetic (Tc=20 K) and paramagnetic behavior, respectively. Generally, Heusler compounds (X_2YZ) crystallize in the cubic L2₁ structure (space group $Fm\overline{3}m$), in which the lattice consists of interpenetrating fcc sublattices. The crystal structures of these compounds are shown in Fig. 1. Our paper is organized as follows.

The theoretical background is presented in Section 2. The results and discussion are presented in Section 3. A summary of our results is given in Section 4.

2. Method of calculations

We have employed first-principles calculations [18,19] using the full-potential linearized augmented plane wave (FP-LAPW) method [20] as implemented in the WIEN2k code [21]. The exchange-correlation effects were described with the parameterization of the generalized gradient approximation (GGA) by Wu and Cohen (GGA-WC) [22], the local spin density approximation (LSDA) [23], GGA+U [24] and LSDA+U [25]. In the calculations reported here, we used the parameter $R_{\rm mt}K_{\rm max} = 9.5$ to determine the matrix size (convergence), where K_{max} is the plane wave cutoff and $R_{\rm mt}$ is the smallest atomic sphere radius. We have chosen a muffin-tin (MT) radius of 2.6 a.u. for the Gd and Au atoms. For the In and Ag atoms, the MT radius is 2.5 a.u., and it is 2.4 a.u. for Cu atoms. Within these spheres, the charge density and potential are expanded in terms of the crystal harmonics up to an angular momenta of L=10. A plane wave expansion has been used in the interstitial region. G_{max} was set to 14, where G_{max} is defined as the magnitude of the largest vector in the charge density Fourier expansion. The Monkorst-Pack special k-points were performed using 1500 special k-points in the Brillouin zone for the Cu₂GdIn, Ag₂GdIn and Au₂GdIn compounds [26]. The convergence criteria for the total energy and force were set to 10^{-5} and 10^{-4} eV/Å, respectively. The GGA+U and LSDA+U calculations used an

^{*} Corresponding author. Tel.: +21395115576; fax: +213 36 92 72 10. *E-mail address*: berrisaadi12@yahoo.fr (S. Berri).

^{0921-4526/\$ -} see front matter \circledcirc 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.physb.2012.04.012

Fig. 1. The crystal structures of Cu₂GdIn, Ag₂GdIn and Au₂GdIn.

Fig. 2.	The variations	in the total	energies as	a function of	the unit cell	volumes of
X2GdI	n (X=Au, Ag or	Cu).				

Table 1

Lattice constant a (Å), bulk modulus *B* (in GPa), pressure derivative of bulk modulus *B'*, elastic constants C_{ij} (in GPa), for Cu₂GdIn, Ag₂GdIn and Au₂GdIn compounds.

Compound		(GGA-WC)	GGA+U	LSDA	LSDA+U	Expt
Cu ₂ GdIn	а	6.70	6.587	6.50	6.498	6.447 [29] 6.641 [30] 6.6643 [31]
	В	82.60	95.234	109.32	106.209	
	B'	4.47	5.029	5.52	4.692	-
Co ₂ CrBi [33]	В	132.7	-	-	-	-
	B'	5.20	-	-	-	-
Pd ₂ ZrAl [34]	В	151	-	-	-	-
Pd ₂ ZrIn [34]	В	141	-	-	-	-
Pd ₂ HfAl [34]	В	159	-	-	-	-
Pd ₂ HfIn [34]	В	150	-	-	-	-
	C_{11}	109.099	148.51	149.050	156.48	-
	C_{12}	70.011	85.42	86.944	84.20	-
	C_{44}	45.143	81.78	61.045	53.43	-
Ag ₂ GdIn	а	7.06	6.903	6.84	6.834	6.965 [28]
	В	81.27	86.435	96.66	97.088	-
	B'	5.52	5.513	5.16	5.407	-
	C_{11}	80.721	106.43	133.169	93.30	-
	C_{12}	65.816	98.35	81.903	103.51	-
	C_{44}	67.322	59.32	42.116	38.30	-

Compound		(GGA-WC)	GGA+U	LSDA	LSDA+U	Expt
Au ₂ GdIn	а	7.06	6.938	6.86	6.857	6.94 [32]
	В	83.65	89.563	112.80	111.558	-
	B'	5.45	6.062	6.33	5.607	-
	C_{11}	89.301	125.39	119.770	107.32	-
	C_{12}	85.257	103.47	108.289	116.63	-
	C_{44}	57.101	51.70	50.572	45.91	-
Ni ₂ MnAl[37-40]	C_{44}	102 ^a , 64 ^b	-	114.9 ^c ,7.3 ^d	-	-

^a Ref. [37], PP/PAW_GGA-PW91.

^b Ref. [38], FLAPW_GGA-PBE.

^c Ref. [39], EMTO_LSDA.

Table 1 (continued)

^d Ref. [40], FP-LMTO_LSDA.

Table 2

Shear modulus *G*, Young's modulus *E* (in GPa), Poisson's ration ν and Lamé's coefficients μ , λ and *B*/*G* (in GPa) for Cu₂Gdln, Ag₂Gdln and Au₂Gdln compounds.

Compound		(GGA-WC)	GGA+U	LSDA	LSDA+U
Cu ₂ GdIn	G	34.903	61.686	49.048	46.514
	Ε	91.782	152.197	128.001	121.766
	ν	0.315	0.234	0.305	0.309
	μ	34.903	61.686	49.048	46.514
	λ	8.139	15.355	11.672	10.982
	Α	28.239	2.592	8.809	1.478
	B/G	2.366	1.883	2.228	2.283
Ag ₂ GdIn	G	43.374	37.208	35.523	20.938
	Ε	110.469	97.617	94.938	58.601
	v	0.273	0.312	0.336	0.399
	μ	43.374	37.208	35.523	20.938
	λ	10.748	8.734	7.822	3.365
	Α	9.033	14.683	1.643	-
	B/G	1.873	2.323	2.721	4.637
Au ₂ GdIn	G	33.069	35.404	32.639	25.684
	Ε	87.657	93.846	89.305	71.560
	ν	0.325	0.324	0.368	0.393
	μ	33.069	35.404	32.639	25.684
	λ	7.516	8.047	6.341	4.317
	Α	2.309	4.717	1.965	4.343
	B/G	2.529	2.529	3.456	-
Ni ₂ MnAl [37-40]	G	32 ^a , 10 ^b	-	15.6 ^c , 18.8 ^d	-

^a Ref. [37], PP/PAW_GGA-PW91.

^b Ref. [38], FLAPW_GGA-PBE.

^c Ref. [39], EMTO_LSDA.

d Ref. [40], FP-LMTO_LSDA.

effective parameter $U_{\text{eff}} = U - J$, where *U* is the Hubbard parameter and *J* is the exchange parameter. We set U = 7.07 eV and J = 0.0 eV. These parameters were sufficient to give good structural and elastic moduli. Download English Version:

https://daneshyari.com/en/article/1810445

Download Persian Version:

https://daneshyari.com/article/1810445

Daneshyari.com