
Vector solitons in semiconductor quantum dots

G.T. Adamashvili

Technical University of Georgia, Kostava str. 77, 0179 Tbilisi, Georgia

a r t i c l e i n f o

Article history:

Received 1 February 2012

Received in revised form

11 April 2012

Accepted 25 April 2012
Available online 4 May 2012

Keywords:

Vector soliton

Self-induced transparency

Semiconductor quantum dots

a b s t r a c t

A theory of an optical vector soliton of self-induced transparency in an ensemble of semiconductor

quantum dots is considered. By using the perturbative reduction method, the system of the Maxwell–

Liouville equations is reduced to the two-component coupled nonlinear Schrödinger equations. It is shown

that a distribution of transition dipole moments of the quantum dots and phase modulation changes

significantly the pulse parameters. The shape of the optical two-component vector soliton with the sum

and difference of the frequencies in the region of the carrier frequency is presented. The vector soliton can

be reduced to the breather solution of self-induced transparency with a different profile. Explicit analytical

expressions in the presence of single-excitonic and biexcitonic transitions for the optical vector soliton are

obtained with realistic parameters which can be reached in current experiments.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Semiconductor quantum dots (SQDs) as model systems for the
consideration of coherent light–matter interaction have attracted
much interest in the context of nano-optics and diverse applications.
SQDs, also referred to as zero-dimensional systems, are nanostruc-
tures that allow confinement of charge carriers in all three spatial
directions, which results in atomic-like discrete energy spectra and
strongly enhanced carrier lifetimes. Such features make quantum
dots similar to atoms in many respects (artificial atoms) [1]. Due to
the large transition dipole moments of SQDs m! reaching values on
the order of 10�17 esu cm, the interaction between SQDs and optical
pulses is strongly enhanced in comparison with atomic systems,
making them especially attractive for investigations of nonlinear
coherent optical phenomena. In addition, very long relaxation times
at low temperatures in SQDs on the order of several tens of pico-
seconds [2,3] allow optical pulse propagation experiments to be
performed with pulses of a few picoseconds.

The observation of optical coherence effects in ensembles of
quantum dots is usually spoiled by the inhomogeneous line
broadening due to dot size fluctuations, with typical broadenings
comparable to the electronic level splitting. Quantum dots often
have a base length in the range 50–400 Å. Size fluctuations in the
quantum dot ensemble lead to an inhomogeneous single-exciton
and biexciton level broadening, with a full width at half maximum
of typically more than several tens of meV. Beside the frequency, the
quantum dot size fluctuations influence also the transition dipole
moments of the SQDs. Borri et al. [2] have reported measurements
of optical Rabi oscillations in the excitonic ground-state transition of

an inhomogeneously broadened InGaAs quantum dot ensemble.
The effect of the biexcitonic resonance in the Rabi oscillations using
different pulse durations have also been experimentally investi-
gated. They found that a distribution with a 20% standard deviation
of the transition dipole moments results in a strong damping of the
oscillations versus pulse area. In the experiments reported in Ref. [2]
it was also found that the period of the Rabi oscillations is changed.
These results show quantitatively how uniformity in dot size is
important for any application based on a coherent light-quantum
dot ensemble interaction.

A nonlinear coherent interaction of an optical pulse with SQDs
is governed by the Maxwell–Liouville equations. The large numer-
ical values of the transition dipole moments and the inhomoge-
neous broadening of the spectral line do not change the Maxwell–
Liouville equations for SQDs in comparison with atomic systems.
But considering the distribution of the transition dipole moments
of the SQDs, the polarization and Maxwell equation of the SQDs
will differ in comparison with atomic systems because the
polarization depends on the variable m!.

The existence of nonlinear solitary waves is one of the most
interesting and important manifestations of nonlinearity in
ensembles of SQDs. The determination of the mechanisms causing
the formation of the optical nonlinear waves and the investigation
of their properties are among the principal problems of the
physics of SQDs.

A resonant optical nonlinear wave can be formed with the help
of the resonance (McCall–Hahn) mechanism of the formation of
nonlinear waves, i.e., from a nonlinear coherent interaction of an
optical pulse with resonant ensembles of SQDs, when the condi-
tions of self-induced transparency (SIT): oTb1 and T5T1;2 are
fulfilled, where T and o are the width and frequency of the pulse,
and T1 and T2 the relaxation and dephasing time of the SQDs,
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respectively [3,4]. If the area of the pulse envelope as a measure of
the light–matter interaction strength Y4p, a soliton is formed,
and if Y51, a breather is generated.

Originally, SIT was investigated in atomic systems, but later,
the search for solitary nonlinear waves was extended to ensem-
bles of SQDs. Experimentally, self-induced transmission on a free
exciton resonance in CdSe [5] and SIT in InGaAs quantum dot
waveguide have been reported [6]. On the theoretical side, the
effect of SIT for solitons and breathers in a sample of inhomo-
geneously broadened SQDs have been investigated numerically
and analytically [3,7,4,8–10]. In these works, nonlinear waves are
described by a single nonlinear Schrödinger (NLS) equation for a
scalar one-component field. Such one-component nonlinear waves
form when a single pulse propagates inside a medium containing
SQDs in such a way that it maintains its state. When these con-
ditions are not satisfied, one has to consider the interaction of the
two field components at different frequencies or polarizations and
solve simultaneously a system of two coupled NLS equations. A
shape-preserving solution of these equations is a vector pulse
because of its two-component nature.

In Ref. [11], from a nonlinear Klein–Gordon equation for a pulse
envelope free of phase modulation, a vector soliton of SIT with the
sum and difference of the frequencies (which were two or three
order less in comparison with the carrier frequency) has been
obtained. Under the condition of phase modulation, the physical
situation will be different, and special considerations will be neces-
sary. It is obvious that for an adequate description of SIT in SQDs, it is
also necessary to take into account a distribution of transition dipole
moments in the ensemble of quantum dots.

The main goals of this work are as follows: (i) the investigation
of the processes of the formation of optical vector solitons with
two different frequency components in the region of the carrier
frequency. (ii) The determination of the explicit analytic expres-
sions for the parameters of the two-component soliton with
the sum and difference of the frequencies for the strength of
the electric field of the wave. (iii) The analytical solution of
the Maxwell–Liouville equations for the ensemble of SQDs in the
presence of single-excitonic and biexcitonic transitions and the
explanation how these equations are modified in the case of phase
modulation and distribution of the dipole moments.

2. Basic equations

We consider the formation of optical nonlinear waves of SIT in
an ensemble of SQDs for linearly polarized waves with width
T and frequency obT�1 with an electric field strength E

!
ðz,tÞ ¼

e
!

Eðz,tÞ propagating along the positive z-axis, where e
!

is a unit
vector directed along the x-axis.

The pulse is tuned to transitions from the ground state 91S of
the SQD to the states 92S and 93S, with energies E1 ¼ 0, E2 ¼

_o0 ¼ Exþdx=2, and E3 ¼ _O0 ¼ 2Exþdxx, respectively. The quan-
tities Ex ¼ ðE2þE02Þ=2 and E3 are the energies of the single-excitonic
and biexcitonic states, respectively. dx ¼ E2�E02 and dxx are the
energies of the exciton fine structure splitting and biexcitonic
binding energy (negative if bound), respectively (Fig. 1); _ is
Planck’s constant. In order that dx=25_o0 and dxx5_ðO0�o0Þ,
the 91S to 92S transition and the 92S to 93S transition are very
close to each other and to the pulse frequency o. The energetic
spectrum of the quantum dots can be considered as a quasi-
equidistant three-level system in a cascade configuration under
off-resonant excitation O0�o0�oa0 and o0�oa0. We assume
that the detunings from the resonance O0�o0�o and o0�o lie
within the bandwidth of the pulse [7].

The Hamiltonian of the system is given by

H¼H0þV , ð1Þ

where H0 ¼ _o092S/29þ_O093S/39 describes the kinetics of the
single-excitonic and biexcitonic states and V ¼� P

!
� E
!

is the
Hamiltonian of the light-quantum dot interaction. The vector of
polarization

P
!
ðz,tÞ ¼

n0

2

X
l ¼ 71

e
!

pZl/mplS, ð2Þ

where n0 is the uniform dot density, e
!

p is the unit vector of
polarization, Zl ¼ exp½ilðkz�otÞ�. pl ¼ pn

�l is the slowly changing
complex amplitude of the polarization. In the case of a cascade
configuration m13 ¼ 0 and p1 ¼ m12r21þm23r32, where m12 ¼ m!12 �

e
!

, m13 ¼ m!13 � e
!

, m23 ¼ m!23 � e
!

. The quantities m!12 and m!23

are the dipole moments for the corresponding transitions which
we assume to be parallel to each other. The quantities rnm are the
elements of the density matrix r which are determined by the
Liouville equation [13]

i_
@rnm

@t
¼
X

k

ð/n9H9kSrkm�rnk/k9H9mSÞ,

where n,m,k¼1,2,3. Substituting in this equation the expression
for the Hamiltonian (1), we obtain a system of equations for the
elements of the density matrix for the quantum dot ensemble

i_
@r11

@t
¼ ð�m12r21þm

n

12r12ÞE,

i_
@r22

@t
¼ ðm12r21�m23r32�m

n

12r12þm
n

23r23ÞE,

i_
@r33

@t
¼ ð�mn

23r23þm23r32ÞE,

i_
@r21

@t
¼ _o0r21�m

n

12Eðr11�r22Þ�m23Er31,

i_
@r32

@t
¼ _ðO0�o0Þr32þm12Er31�m

n

23Eðr22�r33Þ,

i_
@r31

@t
¼ _O0r31�m

n

23Er21þm
n

12Er32: ð3Þ

When the transitions between energetic states of the quantum
dots correspond to a Dm¼ 0 transition, we may take m21 and
m23 to be real vectors, m21 ¼ mn

21, m23 ¼ mn

23; such transitions might
be induced by linearly polarized light which is investigated in
detail. In addition, for simplicity, we assume that m¼ m12 ¼ m23

and under this condition

/mplS¼
Z Z

gðDÞhðm0�mÞmplðD,m,z,tÞ dm dD, ð4Þ

where gðDÞ is the inhomogeneous broadening lineshape function,
D¼o0�o, and hðm0�mÞ is the distribution function of transition
dipole moments of SQDs. For this function the normalization

Fig. 1. Schematic of the SQD energetic levels.
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