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ABSTRACT

We study the electronic structure and transport for Dirac electron on the surface of a three-dimensional
(3D) topological insulator attached to an electromagnetic superlattice. It is found that, by means of the
transfer-matrix method, the number of electronic tunneling channels for magnetic barriers in
antiparallel alignment is larger than that in parallel alignment, which stems to the energy band
structures. Interestingly, a remarkable semiconducting transport behavior appears in this system with a
strong magnetic barrier due to low energy band nearly paralleling to the Fermi level. Consequently,
there is only small incident angle transport in the higher energy region when the system is modulated
mainly by the higher electric barriers. We further find that the spatial distribution of the spin
polarization oscillates periodically in the incoming region, but it is almost in-plane with a fixed
direction in the transmitting region. The results may provide a further understanding of the nature of
3D TI surface states, and may be useful in the design of topological insulator-based electronic devices

such as collimating electron beam.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Topological insulator (TI) [1] has been gaining increased
theoretical and experimental attentions due to its novel proper-
ties and potential applications [2]. A Tl is characterized by a fully
insulating gap in the bulk and gapless helical edge or surface
states on the boundary [3-9]. In a three-dimensional (3D) TI, it
has been verified [10-15] that the surface states with an odd
number of Dirac cones are robust against disorder scattering and
many-body interaction. Owing to the strong spin-orbit interac-
tion the direction of electron spin is locked perpendicularly to its
momentum, and these surface states are protected by the time-
reversal symmetry [16-18].

Interestingly, the properties of surface states can be manipu-
lated electrically or/and magnetically [19-26]. For example, the
sensitive dependence of conductance on ferromagnets or a gate
voltage has been demonstrated [25,26]. Mondal et al. [27] have
also obtained an interesting way to realize magnetic switching on
3D TI surface with the exchange field produced by a single
ferromagnetic strip. Recently, Zhang et al. [28] have investigated
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the band and transport features of Dirac electrons on the surface
of a 3D TI with a uniform magnetic superlattice, respectively.
They have found that the Dirac point is shifted by the magnetic
superlattice in parallel (P) configuration while unshifted in anti-
parallel (AP) configuration, and a full transmission gap in both P
and AP alignments has been presented for the system. Further, a
sliding [29] or spiral [30] magnetic superlattice on the surface of a
3D TI has also been considered, respectively. The energy spectrum
of these superlattice systems have only two Dirac points but
many semi-Dirac points [29,30]. On the other hand, the effects of
ferromagnets onto a conventional two-dimensional electron gas
(2DEG) have been studied extensively [31]. Moreover, periodic
magnetic and electric fields applied to a carbon monolayer
(graphene) have also been studied recently [32], where a gap
between the valence and conduction band is introduced. How-
ever, periodic vector and scale potentials on the surface of a 3D TI
have not been mentioned. This system may also be realized by
depositing ferromagnetic insulating (FI) and Schottky metal (SM)
stripes on the surface of a TI crystal, and may present some
different transport behavior from that for graphene [32].

In this paper, by means of the transfer-matrix method, we
present a theoretical investigation on the transport property for
Dirac electrons on the (11 1) surface of a Bi,Ses crystal, modu-
lated by an electromagnetic superlattice, i.e., alternative magnetic
barriers inserted in electric barriers. It is found that the number of
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transmission channels for magnetic barriers with AP configura-
tion is larger than that for P configuration. Interestingly, for both P
and AP configurations a remarkable semiconducting transport
behavior appears when the magnetic barrier is strong enough. In
the case of high electric barrier the transport for large incident
angle is fully blocked in the high energy regime. Moreover, the
distribution of the electron spin polarization shows a spatial-
dependent distribution in the incoming region of the system, but
in the transmitting region its direction is always the same as the
incident direction. These phenomena are somewhat different
from those for conventional 2DEG [31] and graphene [32] due
to the spin-moment locking of electrons on TI surface, and may
be used in designing TI-based nanodevices such as collimating
electron beam [23,26].

The rest of the paper is organized as follows. In Section 2, we
describe the model and present the general formalism with
transfer-matrix method to evaluate the dispersion, transmission
probability and conductance for the system. In Section 3, the
results of typical numerical examples with physical explanations
for the system are given. Finally, Section 4 summarize the work.

2. Model and method

As shown in Fig. 1, the system proposed in this work is the
surface of a 3D TI in (x,y) plane modulated by an attached
electromagnetic superlattice, i.e.,, magnetic barriers with electric
barriers between them. This system can be realized [31] by
alternatively depositing FI and SM stripes on the surface of a 3D
TI to produce local fields. The Hamiltonian around Dirac point for
the system can be described by [26]

H=vro - [p+eAX)]+V(X), M

where the Zeeman term has been neglected and h=c=1 is
adopted, vg is the Fermi velocity, p the in-plane momentum
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Fig. 1. (a) Schematic view of the considered surface of a 3D TI modulated by a
periodic magnetic alternated with electric barrier, where the length of a unit is L.
(b) Simplified profiles of the magnetic field B(x) (spikelike black solid line), the
corresponding vector potential A(x) (squared red dashed line) and electric barrier
(squared blue dotted line) for P alignment case, where the width of magnetic and
electric barrier are, respectively, d, and d,, the space between any two barriers is
w. (c) The same as in (b) for AP alignment case. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version
of this article.)

operator, e the electron’s charge, ¢ = (0x,0y) the Pauli matrices,
A(x) the Fl-induced vector potential, and V(x) the SM-induced
scalar potential.

In particular, we assume that the Fl-induced local magnetic
field is

Bz(X) = Bo[0(x)—(x—d1)]+ ABo[0(X—L)—(x—L—d1)]

with corresponding vector potential

Ay(x) = Bod1[O(x)O(d1 —X) + 2O (x—L)O(L+dq —x)]

under the Landau gauge, and the electric potential profile is

V(x) = Vo[@(x—d;—W)O(d; + W+ dr—X)
+10(X—L—d;—wW)O(L+di +w+dy—Xx)].

Here ©(-) is the step-function and J(-) the -function, A =1/-1 for
P/AP alignment of the magnetization configuration, d; is the
width of a magnetic barrier, d, the width of an electric barrier,
and w the distance between any two barriers. Consequently, Ay(x)
is replaced by a constant value m=Byd; in the magnetic barrier
regions with magnetization aligned to the +y-axis or zero
otherwise. The periodic modulation length is L=d;+d+2w for
P alignment and 2L for AP alignment. Therefore, the system of N
units is modulated by a vector (magnetic) potential A,(x)=
Ay(x+nL) and a scalar (electric) potential V(x) = V(x+nL).

In the Hamiltonian, all the physical quantities can be expressed in
the dimensionless units by introducing magnetic length lz=+/%/eBo.
Then the magnetic field B,(x)— B;(x)Bg, coordinate r— rlg, wavevec-
tor k—Kk/Ig, vector potential Ay(x)—Ay(x)Bylg, scalar potential
V(x)—V(x)Vy and energy E—EEy. Thus Hamiltonian (1) can be
rewritten as

V(x) kx—i(ky +Ay(x))
H= ( Ky +i(ky—Ay (X)) V(x) ' @
with which the equation Hy/(x,y) = Eys(x,y) can employ the form of
wavefunction

Vi(xy)
)= < Yp(x.y) > '

Because that the system described by the above Hamiltonian is
translational invariant along the y direction, the wave function for
Dirac electrons can be expressed as y(x,y) = e ¢(x), where k, is the
wavevector along the interface and ¢(x) the spin function. In the
regions without modulation potential, the x- and y-direction wave
vectors are kq=E cos o and q;=E sin o, with incident angle «. In the
magnetic and electric barrier modulated regions for the case of P

alignment, the wavevectors are k, = /E*>—(k,+Ay)* =E cos  and

4y =ky+Ay=Esin B, ks =/(E-Vo)*~k, = (E-Vo)cos y and qs =

(E—Vy)sin y with refraction angles f and 7y, respectively. Correspond-

ingly, for AP configuration Kk, = y/E?—(k,—Ay)> =E cos f§/, q = k,—
Ay=Esin f, Ky =/(E+ Vo)z—k}z, =(E+Vp)cos 7', g5 =(E+Vo)sin y’

with refraction angles 8 and }’ in opposite magnetic and electric
barriers, respectively. Therefore, in the regions of incoming (i),
transmitting (t), unlimited (II, IV), magnetic barrier (I) and electric
barrier (Ill) (see Fig. 1(b)), the wave function can be uniformly
expressed as

. 1 . 1
¢(X) = axelij ( el ) + bxeilij ( _e-io ) ’ (4)

where ay and by (X=i, I, II, I1I, .. .,t) are the coefficients of waves with
wave vector k; (j=1,2,3) and refraction angle ¢ =(o, f, y) in different
regions. On the other hand, for AP alignment in magnetic and electric
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