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We present a theoretical study of electron transport properties of two-dimensional electron gas in
AlGaN/GaN heterostructures. By assuming a drifted Fermi-Dirac distribution and taking into account
all major scattering mechanisms, including polar optical and acoustic phonons, background impurities,
dislocation and interface roughness, the momentum- and energy-balance equations derived from
Boltzmann equation are solved self-consistently. The dependence of the electron drift velocity and
electron temperature as a function of the applied electric field are obtained and discussed.
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1. Introduction

Over the past decade, there has been increasing interest in the
study of GaN material and GaN-based electronic and optoelec-
tronic devices. Due to its large direct bandgap energy, large
saturation velocity, high breakdown voltage and high tempera-
ture stability, GaN is an ideal material for a variety of electronic
and optoelectronic applications, such as light-emitting diodes,
blue lasers, transistors operating in a wide range frequency and
high power [1-4]. Many device operations rely on the electron
transport properties, therefore experimental and theoretical stu-
dies on electric field dependent drift velocity in GaN material and
related heterostructures are extremely important.

Electron transport properties in GaN material and GaN-based
nanostructures have been calculated by many authors using the
Monte-Carlo (MC) technique [5-7] and the phenomenological
velocity-field model [8]. The MC technique is a numerical solution
to the Boltzmann equation with less approximations and has
become a powerful tool in the treatment of semiconductor
transport and device modeling. However, this numerical method
is considerably CPU consuming, and has intrinsic shortcomings in
offering physical insights and systematic analyses. Besides the MC
method and the phenomenological model, it is known that the
balance-equation approach is an effective method in studying the
linear and nonlinear response of a semiconductor device to the dc
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and ac electric field applied [9-11]. Generally speaking, the
balance-equation approach contains mass balance, momentum/
force balance, and energy balance. In this paper, we investigate
the transport characteristics of a two-dimensional electron gas
(2DEG) in an AlGaN/GaN heterostructure by using the momen-
tum- and energy-balance equations which are derived from the
Boltzmann equation. In this approach, we avoid the difficulties in
solving directly the Boltzmann equation. The electric field depen-
dence of the electron drift velocity, the mobility and electron
temperature are calculated at different lattice temperatures.
Different scattering mechanisms are considered in the model
and the effects on transport are discussed.

2. Theoretical approach
2.1. Electronic transition rates

In this work, we consider a 2DEG in an AlGaN/GaN hetero-
structure whose growth-direction is taken along the z-axis with a
confining potential U(z) and electron transport occurs in the xy-
plane. Considering the electron interactions with impurities and
phonons in the heterostructure, the Hamiltonian to describe such
a system can be written as

H=Ho+H,_i+Hep. (1)
Here, Hy :P2/2m*+U(z) is the electron Hamiltonian, m* is the
electron effective mass, P=(p,.p,.p,) with p,=—ihd/x is the

momentum operator along the x-direction, and H,_; and H._p
are the electron-impurity interaction and electron-phonon
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interaction Hamiltonian, respectively. In the usual effective mass
approach, the electron wavefunction and energy spectrum with
regarding to Ho can be written, as

k) = ¥u(R) =e*",(2), )
and
En(K) = 12K /2m* + &, 3

where n is the index for the nth electronic subband along the
growth direction, k= (kx,ky) is the electron wavevector in the xy-
plane, and R = (r,2) = (x,y,2). The electron wavefunction y,(z) and
the nth subband energy ¢, are determined by

[—(h? /2m*)d? /dZ* + U(2)— el ,(2) = 0. )

We take the electron-phonon interaction and electron-impur-
ity interaction as perturbations. For electron interaction with
bulk-like phonons, the Hamiltonian takes a form

= S Vel Vg 10 cur) ®
q;

where Q =(q,9,) = (4x.q9y,9,) is the phonon wavevector, (aa,aq)
are the canonical conjugate coordinates of the phonon system, Vo
is the electron-phonon interaction coefficient, and wq is the
phonon frequency. Applying the electron wavefunction (Eq. (2))
and energy spectrum (Eq. (3)) to the Fermi’s golden rule, the
electronic transition rate induced by phonon scattering processes
is obtained as

W kK)= 2" No Vo |2 Gun (0)0k s qOLEn(K)—En (K) + hedg]
m0CIO=572_ | Ng+1 | Vel Gm (@200 aer OO ~En () £ ol

(6)

where q = (qy.q,) is the change of the electron wavevector during
an electron scattering event, and the upper (lower) case refers to
absorption (emission) of a phonon, Ng = (e"@e/%T—1)~1 is the
phonon occupation number, and Gpn(q,) = | [dz wﬁ,(z)zpn(z)eiqzz\z
is the form factor for the electron-phonon interaction in a 2DEG
system.

For electron-LO-phonon interaction, described by the Frohlich
Hamiltonian, we have [9]

Vio(Q)|* = 4naLo(hwyo)? /Q2, 7

with o the electron-LO-phonon coupling constant, Ly = (h/2m*
®10)"/? the polaron radius. The matrix elements |V¢ |* for defor-
mation potential, longitudinal piezoelectric and transverse piezo-
electric scattering are given by [9]

> EphQ
[Vpp(Q)|” = 200, €))

2 32m2h%(ehia) 3444y q,)
Vi @*= =500 i ©)
and

321212 (ehy4)? (34x4,4,)°
V(@) = #(qiqﬁwiqiw%qi)—#, (10)
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Here, Ep is the deformation potential constant, p is the density, x
is the dielectric constant, hy4 is the piezoelectric constant, and
v)(vy) is the longitudinal (transverse) sound velocity in GaN.

The electronic transition rate induced by impurity scattering
processes is obtained as

i / 2 /
Wi (1) = 55 [Un (@] 3 4 g0LEn (B0 —En (K], a1

with

2nZe?

Unn’ 2 =\
|Une @) K(q+qrr)

2
/ dzani(Za)For (0.20), (12)

where n,(z) is the impurity distribution along the growth direc-
tion, g =2m*e?/kh? is the Thomas-Fermi wave vector, and
Fan(q,20) = | [ dz W @ (2)e~917%] 2 is the form factor for elec-
tron-impurity scattering in a 2DEG system. In the present study,
we consider an unintentionally doped AlGaN/GaN heterostruc-
ture, i.e., the ionized impurity scattering is mainly caused by the
background impurities, which can be approximated as a uniform
volume density N; in the GaN region.

2.2. Momentum- and energy-balance equations

With the electronic transition rates, we apply the Boltzmann
equation approach to study the electronic transport properties in
a 2DEG system. In this study, we employ a semiclassic Boltzmann
equation as the governing transport equation to reveal the effect
of a driving electric field Fy applied along the x-direction. In the
case of a degenerate statistics, the steady-state Boltzmann equa-
tion can be written as [12]

e n®) S F (KK Fo (KK, (13)
n K
where Fup (KK) =f,00[1—f KW (K K), f,(K) is the momen-
tum-distribution function for an electron at state |nk), and
W (K K) is the electronic transition rate from state |nk)> to
state |n’,K'> induced by scattering.

In the presence of the driving electric field and scattering
centers, the distribution function can be determined by the
Boltzmann equation, and therefore the interested physical quan-
tities can be calculated. We assume that the momentum distribu-
tion in a high density 2DEG system can be described by a Fermi-
Dirac statistics through

oK) =~ f(En(k—m*Vvy /1), Ty), (14)

where the momentum is shifted due to the presence of the
driving field F,, v, = (v5,0,0) is the average drift velocity of the
electrons in the nth subband, T, is the electron temperature for
electrons in the nth subband, and f(x,T,) = [e®* #"/kTn 4 1]-1 with
u* being the Fermi energy of the 2DEG system, which is
determined by the electron density N =g, f,(K), where gs=2
accounts for the spin degeneracy.

It is known that there is no simple and analytical solution to
the Boltzmann equation (Eq. (13)) with the electronic transition
rate given by Egs. (6) and (11). Here, we apply the usual balance-
equation approach to solve the problem [11]. For the first
moment, the momentum-balance equation can be derived by
multiplying g,>", kx to both sides of Eq. (13), which reads

eFNp =25~ (k' =k)f yAO[1—f o (KIW i (K K, (15)
n K k

h  oky

where N, =g,> " f,(K) is the electron density in the nth subband.
For the second moment, the energy-balance equation can be
derived by multiplying g5 En(K) to both sides of Eq. (13), which
reads

eFxNpVin =2 " [Ea(K)—En(01f ([ 1—f o (K)]Wp, (K K). (16)

n K k

For simplicity, we consider the momentum loss due to dis-
location and interface roughness scattering by means of their
average momentum relaxation time, which reads

eFx=m*v/1j, a7

where j stands for a specific scattering mechanism.
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