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a b s t r a c t

We present a theoretical study of electron transport properties of two-dimensional electron gas in

AlGaN/GaN heterostructures. By assuming a drifted Fermi–Dirac distribution and taking into account

all major scattering mechanisms, including polar optical and acoustic phonons, background impurities,

dislocation and interface roughness, the momentum- and energy-balance equations derived from

Boltzmann equation are solved self-consistently. The dependence of the electron drift velocity and

electron temperature as a function of the applied electric field are obtained and discussed.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decade, there has been increasing interest in the
study of GaN material and GaN-based electronic and optoelec-
tronic devices. Due to its large direct bandgap energy, large
saturation velocity, high breakdown voltage and high tempera-
ture stability, GaN is an ideal material for a variety of electronic
and optoelectronic applications, such as light-emitting diodes,
blue lasers, transistors operating in a wide range frequency and
high power [1–4]. Many device operations rely on the electron
transport properties, therefore experimental and theoretical stu-
dies on electric field dependent drift velocity in GaN material and
related heterostructures are extremely important.

Electron transport properties in GaN material and GaN-based
nanostructures have been calculated by many authors using the
Monte-Carlo (MC) technique [5–7] and the phenomenological
velocity-field model [8]. The MC technique is a numerical solution
to the Boltzmann equation with less approximations and has
become a powerful tool in the treatment of semiconductor
transport and device modeling. However, this numerical method
is considerably CPU consuming, and has intrinsic shortcomings in
offering physical insights and systematic analyses. Besides the MC
method and the phenomenological model, it is known that the
balance-equation approach is an effective method in studying the
linear and nonlinear response of a semiconductor device to the dc

and ac electric field applied [9–11]. Generally speaking, the
balance-equation approach contains mass balance, momentum/
force balance, and energy balance. In this paper, we investigate
the transport characteristics of a two-dimensional electron gas
(2DEG) in an AlGaN/GaN heterostructure by using the momen-
tum- and energy-balance equations which are derived from the
Boltzmann equation. In this approach, we avoid the difficulties in
solving directly the Boltzmann equation. The electric field depen-
dence of the electron drift velocity, the mobility and electron
temperature are calculated at different lattice temperatures.
Different scattering mechanisms are considered in the model
and the effects on transport are discussed.

2. Theoretical approach

2.1. Electronic transition rates

In this work, we consider a 2DEG in an AlGaN/GaN hetero-
structure whose growth-direction is taken along the z-axis with a
confining potential U(z) and electron transport occurs in the xy-
plane. Considering the electron interactions with impurities and
phonons in the heterostructure, the Hamiltonian to describe such
a system can be written as

H¼H0þHe�iþHe�p: ð1Þ

Here, H0 ¼ P2=2mnþUðzÞ is the electron Hamiltonian, mn is the
electron effective mass, P¼ ðpx,py,pzÞ with px ¼�i_@=@x is the
momentum operator along the x-direction, and He�i and He�p

are the electron–impurity interaction and electron–phonon
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interaction Hamiltonian, respectively. In the usual effective mass
approach, the electron wavefunction and energy spectrum with
regarding to H0 can be written, as

9n,kS¼CnkðRÞ ¼ eik�rcnðzÞ, ð2Þ

and

EnðkÞ ¼ _2k2=2mnþen, ð3Þ

where n is the index for the nth electronic subband along the
growth direction, k¼ ðkx,kyÞ is the electron wavevector in the xy-
plane, and R¼ ðr,zÞ ¼ ðx,y,zÞ. The electron wavefunction cnðzÞ and
the nth subband energy en are determined by

½�ð_2=2mnÞd2=dz2
þUðzÞ�en�cnðzÞ ¼ 0: ð4Þ

We take the electron–phonon interaction and electron–impur-
ity interaction as perturbations. For electron interaction with
bulk-like phonons, the Hamiltonian takes a form

He�p ¼
X

qz

½VQ aQ eiðQ �RþoQ tÞ þVn

Q ayQ e�iðQ �RþoQ tÞ�, ð5Þ

where Q ¼ ðq,qzÞ ¼ ðqx,qy,qzÞ is the phonon wavevector, ðayQ ,aQ Þ

are the canonical conjugate coordinates of the phonon system, VQ

is the electron–phonon interaction coefficient, and oQ is the
phonon frequency. Applying the electron wavefunction (Eq. (2))
and energy spectrum (Eq. (3)) to the Fermi’s golden rule, the
electronic transition rate induced by phonon scattering processes
is obtained as

Wep
nn0 ðk,k0Þ ¼

2p
_

X
qz

NQ

NQþ1

" #
9VQ 9

2
Gnn0 ðqzÞdk0 ,kþqd½EnðkÞ�En0 ðk

0
Þ7_oQ �,

ð6Þ

where q¼ ðqx,qyÞ is the change of the electron wavevector during
an electron scattering event, and the upper (lower) case refers to
absorption (emission) of a phonon, NQ ¼ ðe

_oQ =kBT�1Þ�1 is the
phonon occupation number, and Gn0nðqzÞ ¼ 9

R
dz cn

n0 ðzÞcnðzÞe
iqzz92

is the form factor for the electron–phonon interaction in a 2DEG
system.

For electron–LO–phonon interaction, described by the Fröhlich
Hamiltonian, we have [9]

9VLOðQ Þ9
2
¼ 4paL0ð_oLOÞ

2=Q2, ð7Þ

with a the electron–LO–phonon coupling constant, L0 ¼ ð_=2mn

oLOÞ
1=2 the polaron radius. The matrix elements 9VQ 9

2
for defor-

mation potential, longitudinal piezoelectric and transverse piezo-
electric scattering are given by [9]

9VDPðQ Þ9
2
¼

E2
D_Q

2rvl
, ð8Þ

9VLPðQ Þ9
2
¼

32p2_2
ðeh14Þ

2

k2rvl

ð3qxqyqzÞ
2

Q7
, ð9Þ

and

9VTPðQ Þ9
2
¼

32p2_2
ðeh14Þ

2

k2rvtQ
5
ðq2

x q2
yþq2

yq2
z þq2

z q2
x Þ�
ð3qxqyqzÞ

2

Q2
, ð10Þ

Here, ED is the deformation potential constant, r is the density, k
is the dielectric constant, h14 is the piezoelectric constant, and
vlðvtÞ is the longitudinal (transverse) sound velocity in GaN.

The electronic transition rate induced by impurity scattering
processes is obtained as

Wei
nn0 ðk,k0Þ ¼

2p
_

9Unn0 ðqÞ9
2dk0 ,kþqd½EnðkÞ�En0 ðk

0
Þ�, ð11Þ

with

9Unn0 ðqÞ9
2
¼

2pZe2

kðqþqTF Þ

" #2 Z
dzaniðzaÞFnn0 ðq,zaÞ, ð12Þ

where ni(z) is the impurity distribution along the growth direc-
tion, qTF ¼ 2mne2=k_2 is the Thomas–Fermi wave vector, and
Fnn0 ðq,zaÞ ¼ 9

R
dz cn

n0 ðzÞcnðzÞe
�q9z�za992

is the form factor for elec-
tron–impurity scattering in a 2DEG system. In the present study,
we consider an unintentionally doped AlGaN/GaN heterostruc-
ture, i.e., the ionized impurity scattering is mainly caused by the
background impurities, which can be approximated as a uniform
volume density NI in the GaN region.

2.2. Momentum- and energy-balance equations

With the electronic transition rates, we apply the Boltzmann
equation approach to study the electronic transport properties in
a 2DEG system. In this study, we employ a semiclassic Boltzmann
equation as the governing transport equation to reveal the effect
of a driving electric field Fx applied along the x-direction. In the
case of a degenerate statistics, the steady-state Boltzmann equa-
tion can be written as [12]

�
eFx

_

@f nðkÞ

@kx
¼
X
n0 ,k0
½Fn0nðk

0,kÞ�Fnn0 ðk,k0Þ�, ð13Þ

where Fnn0 ðk,k0Þ ¼ f nðkÞ½1�f n0 ðk
0
Þ�Wnn0 ðk,k0Þ, f nðkÞ is the momen-

tum-distribution function for an electron at state 9n,kS, and
Wnn0 ðk,k0Þ is the electronic transition rate from state 9n,kS to
state 9n0,k0S induced by scattering.

In the presence of the driving electric field and scattering
centers, the distribution function can be determined by the
Boltzmann equation, and therefore the interested physical quan-
tities can be calculated. We assume that the momentum distribu-
tion in a high density 2DEG system can be described by a Fermi–
Dirac statistics through

f nðkÞC f ðEnðk�mnvn=_Þ,TnÞ, ð14Þ

where the momentum is shifted due to the presence of the
driving field Fx, vn ¼ ðvn,0,0Þ is the average drift velocity of the
electrons in the nth subband, Tn is the electron temperature for
electrons in the nth subband, and f ðx,TnÞ ¼ ½eðx�m

nÞ=kBTnþ1��1 with
mn being the Fermi energy of the 2DEG system, which is
determined by the electron density N¼ gs

P
n,kf nðkÞ, where gs¼2

accounts for the spin degeneracy.
It is known that there is no simple and analytical solution to

the Boltzmann equation (Eq. (13)) with the electronic transition
rate given by Eqs. (6) and (11). Here, we apply the usual balance-
equation approach to solve the problem [11]. For the first
moment, the momentum-balance equation can be derived by
multiplying gs

P
kkx to both sides of Eq. (13), which reads

eFxNn ¼ 2_
X

n0 ,k0 ,k

ðkx
0
�kxÞf nðkÞ½1�f n0 ðk

0
Þ�Wn,n0 ðk,k0Þ, ð15Þ

where Nn ¼ gs

P
kf nðkÞ is the electron density in the nth subband.

For the second moment, the energy-balance equation can be
derived by multiplying gs

P
kEnðkÞ to both sides of Eq. (13), which

reads

eFxNnVn ¼ 2
X

n0 ,k0 ,k

½Enðk
0
Þ�EnðkÞ�f nðkÞ½1�f n0 ðk

0
Þ�Wn,n0 ðk,k0Þ: ð16Þ

For simplicity, we consider the momentum loss due to dis-
location and interface roughness scattering by means of their
average momentum relaxation time, which reads

eFx ¼mnv=tj, ð17Þ

where j stands for a specific scattering mechanism.
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