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a b s t r a c t

We consider rate-independent evolutionary systems over a physical domain O that are governed by

simple hysteresis operators at each material point. For multiscale systems where e denotes the ratio

between the microscopic and the macroscopic length scale, we show that in the limit e-0 we are led to

systems where the hysteresis operators at each macroscopic point is a generalized Prandtl–Ishlinskii

operator.

& 2011 Published by Elsevier B.V.

1. Introduction

We are interested in the generation of complicated hysteresis in
the process of taking multiscale limits where the underlying
problem on the small scale is described by simple hysteresis loops.
For instance, we will show that homogenization of a problem with
classical play operators, which do not have interior hysteresis loops,
on the small scale will give rise to a homogenized macroscopic
problem on the larger scale that has a complicated hysteresis
operator of Prandtl–Ishlinskii type, which displays interior loops.

Our theory is based on the energetic formulation of rate-
independent systems (RIS) ðQ,E,RÞwhere the hysteresis is described
by a differential inclusion for the state variable q : ½0,T�-Q, namely

0A@Rð _qÞþDEðt,qÞ: ð1:1Þ

Here E is the energy potential, and the dissipation potential R is
nonnegative, convex and homogeneous of degree 1, which leads to
rate independency. The set Kn :¼ @Rð0Þ �Qn is called the play
domain and its boundary is called the yields surface. In the case
that the energy is quadratic in q, viz.

Eðt,qÞ ¼ 1
2/Aq,qS�/‘ðtÞ,qS,

we call the solution operator for Eq. (1.1) the play operator (cf. Refs.

[5,14]) associated to A and Kn and write

qðtÞ ¼PA,Kn ½qð0Þ,‘�ðtÞ

for the output qAW1;1
ð½0,T�;QÞ, where qð0Þ and ‘AW1;1

ð½0,T�;Qn
Þ

are the inputs. Applications include elastoplasticity, isothermal
shape-memory materials, piezo-electric materials, or micromagnet-
ism. We refer to the surveys [31,5,1,18,19] for further details on
applications.

In Section 2 we recall the general theory of convergence of RIS
ðQ,Ee,ReÞ where e is a small parameter tending to 0. As a special
case of the abstract theory of G-convergence of energetic solu-
tions derived in Ref. [24] we present a fairly general convergence
theory for play operators. Under the assumption that Ee and Re
converge in the sense of Mosco to E0 and R0, respectively, and
that Re continuously converges to R0 we have the following
statement (cf. Ref. [17]): If

qeð0Þ*q0ð0Þ and Eeð0,qeð0ÞÞ-E0ð0,q0ð0ÞÞ

then the solutions qe satisfy qeðtÞ-q0ðtÞ for all tA ½0,T�. The latter
statement is the definition of the G-convergence of the RIS ðQ,Ee,ReÞ

to ðQ,E0,R0Þ. Application of this theory will be given in homogeni-
zation and in dimension reductions in Sections 4 and 5.

The G-convergence theory shows that the set of abstract play
operators is closed under G-convergence for RIS. In this work we
want to highlight that in such limit processes the class of simple
hysteresis operators is not closed. In particular, we want to show
that in limits for multiscale systems we can generate complex
hysteresis operators in the large-scale system, when starting with
simple hysteresis operators for the small-scale system. These
hysteresis operators are obtained as symmetric B-contraction of a
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symmetric play operator, namely

PB
A,Kn ½q0, ~‘� :¼ BPA,Kn ½q0,Bn ~‘ �:

We call these hysteresis operators generalized Prandtl–Ishlinskii

operators (gPI operators). See Section 3 for further details and
nontrivial examples.

In Section 4 we show how these operators appear in homo-
genization of elastoplastic materials, where the material proper-
ties are periodically modulated on the small scale with period e.
The mathematical tools is two-scale homogenization (cf. Refs.
[2,23,26,32,28,29]), where the micro-cell problem defines the gPI
operator. According to Refs. [23,8,12], the case of linearized
elastoplasticity, where q¼ ðu,zÞ with the displacement u : O-Rd

and the internal variable z : O-Rm, one finds different macro-
scopic elastoplastic models depending on the strength of the
gradient regularization e2g9rz92

. In the case go1 one obtains
classical models with homogenized elasticity and averaged yield
strength. We refer also to Ref. [7] for such a result in space
dimension 1. However, for gZ1 the macroscopic model can only
be described in terms of a gPI operator. The occurrence of more
complicated hysteresis operators for homogenized material mod-
els was also highlighted in Refs. [32,33].

In Section 5 we recall the rigorous derivation of an elastoplas-
tic plate model from Refs. [16,17]. We show that it has a natural
interpretation in terms of vector-valued gPI operators. While the
case of pure bending was treated in Ref. [11], we follow the
general approach of Ref. [17], where membrane and bending
deformations are coupled via plastic effects.

2. C-Convergence for rate-independent systems

Here we consider general families ðQ,Ee,ReÞeA �0;1� of RIS and
study the convergence of the associated solutions qe in the limit
e-0. The aim is to establish fairly general conditions on the
convergences of ðEe,ReÞ to ðE0,R0Þ that guarantee that the solu-
tions qe converge to the solution q of the limit system ðQ,E0,R0Þ,
which we then call the G-limit of the above family.

For rate-independent systems a general strategy for
G-convergence was developed in Ref. [24], which found numer-
ous applications in, e.g., fracture [9], homogenization [23], numer-
ical approximation [13,10,20], and delamination [27,25]. Here we
specialize this theory to the case that Eeðt,�Þ : Q-R1 is a quad-
ratic functional, as it is the case for play operators and in
linearized elastoplasticity. Thus, the abstract theory is simplified
in two respects. First, the systems under consideration have
unique solutions and we do not need to consider subsequences.
Second, the quadratic nature of the energy allows for a simpler
construction of recovery sequences by using the quadratic trick
introduced in Ref. [23]. Thus, the strong compactness assump-
tions in Ref. [24] can be avoided.

The convergence result is formulated abstractly in terms of
G-convergence of Eeðt,�Þ towards E0ðt,�Þ and of Re to R0, where we
use the weak and the strong topologies in the underlying separ-
able Hilbert space Q. It might be surprising that convergence of
the functionals Ee and Re is enough to guarantee convergence of
the solutions qe of the subdifferential inclusion (1.1), since from
the equation it seems necessary to control the convergence of the
(sub-) differentials. The relevance of the functionals is seen better
if we use the equivalent energetic formulation for RIS. Here the
equivalence holds, as Eeðt,�Þ is strictly convex, see Refs. [21,18]. A
function qe is called energetic solution for the RIS ðQ,Ee,ReÞ if for all
tA ½0,T� we have the stability (S) and the energy balance (E):

ðEÞ Eeðt,qeðtÞÞrEeðt, ~qÞþReð ~q�qeðtÞÞ for all ~qAQ;

ðSÞ Eeðt,qeðtÞÞþDissRe ðq
e,½0,t�Þ ¼ Eeð0,qeð0ÞÞþ

Z t

0
@sEeðs,qeðsÞÞ ds:

The dissipation DissRðq,½r,s�Þ is defined via

DissRðq,½r,s�Þ :¼ sup
XN

j ¼ 1

RðqðtjÞ�qðtj�1ÞÞ,

where the supremum is taken over all NAN and all partitions
rot0ot1o � � �otN os. Note that the dissipation is defined along
any curve q : ½0,T�-Q without any assumptions on continuity or
differentiability. For absolutely continuous functions we have

DissRðq,½r,s�Þ ¼

Z s

r
Rð _qðtÞÞ dt:

We recall that the energetic formulation via (S) and (E) is totally
equivalent to the subdifferential inclusion for play operators, where
Eeðt,�Þ is uniformly convex. Its importance is that it is totally
derivative free. We neither need derivatives of the solution qe :

½0,T�-Q nor of the functionals Ee and Re. Thus, it is ideally suited
for limiting processes in the variational sense, where the conver-
gence of functionals is studied, see Refs. [3,6]. We use the notions of
Mosco convergence and continuous convergence for functionals In.
The first is written In-

M I and defined via (i) and (ii):

(i) Liminf estimate:

qn*q ¼) I ðqÞr lim inf
n-1

InðqnÞ,

(ii) Limsup estimate ( ¼̂ ( recovery sequences)

8 q̂AQ ( ðq̂nÞn : q̂n-q̂ and I ðq̂ÞZ lim sup
n-1

Inðq̂nÞ:

The continuous convergence (with respect to the norm topology)
is written as In*

c I and defined via

In*
c I 3 ðqn-q ) InðqnÞ-I ðqÞÞ:

Our precise assumptions on the family ðQ,Ee,ReÞeA ½0;1� are the
following. Note that often the limit functionals E0 and R0 are
included in the assumptions via e¼ 0. The assumptions
(2.1a)–(2.1c) provide some uniform a priori estimates, while
Eqs. (2.1d) and (2.1e) are the main convergence assumptions:

Eeðt,qÞ ¼ BeðqÞ�/‘eðtÞ,qS where Be
is quadratic, wlsc and ‘eAC1

ð½0,T�;Qn
Þ; ð2:1aÞ

Re : Q-½0,1� is 1�homogeneous, wlsc, and convex; ð2:1bÞ

(b,C40 8ðt,qÞA ½0,T� �Q 8eA ½0;1�:

BeðqÞZ
b
2
JqJ2, J‘eðtÞJQnþJ_‘eðtÞJQn rC; ð2:1cÞ

Be-
M B0 and 8t : ‘eðtÞ-‘0ðtÞinQn; ð2:1dÞ

Re*
c R0 and Re-

M R0: ð2:1eÞ

In the last condition ‘‘*
c

’’ implies that every strongly converging

sequence is a recovery sequence. The additional condition ‘‘-
M

’’ is

needed in order to guarantee R0ðq0Þr lim infe-0ReðqeÞ whenever
qe*q0. Note that we only ask for continuous convergence in the
norm topology, which is in contrast to Refs. [13,24,20], where the
more restrictive continuous convergence in the weak topology is
used. Thus, one can follow Ref. [23] and exploit the quadratic
structure (2.1a) of Ee for the construction of mutual recovery

sequences.
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