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a b s t r a c t

In this paper we extend the Brown’s fundamental theorem on fine ferromagnetic particles to the case of

a general ellipsoid. By means of Poincaré inequality for the Sobolev space H1
ðO,R3

Þ, and some

properties of the induced magnetic field operator, it is rigorously proven that for an ellipsoidal particle,

with diameter d, there exists a critical size (diameter) dc such that for dodc the uniform magnetization

states are the only global minimizers of the Gibbs–Landau free energy functional GL. A lower bound for

dc is then given in terms of the demagnetizing factors.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Theoretical discussions of the coercivity of magnetic materials
make considerable use of the following idea [1]: ‘‘whereas a

ferromagnetic material in bulk (in zero applied field) possesses a

domain structure, the same material in the form of a sufficiently fine

particle is uniformly magnetized to (very near) the saturation value,
or in other words consists of a single domain’’.

But as Brown points out in Ref. [1]: ‘‘the idea as thus expresses,
scarcely is to be called a theorem, for it is not a proved proposition

nor a strictly true one’’.
The first rigorous formulation of this idea is due to Brown

himself who, in his fundamental paper [1] rigorously proved for
spherical particles what is known as Brown’s fundamental theorem

of the theory of fine ferromagnetic particles.
This fundamental theorem states the existence of a critical

radius rc of the spherical particle such that for rorc and zero
applied field the state of lowest free energy (the ground state) is
one of uniform magnetization.

The physical importance of Brown’s fundamental theorem is
that it formally explains, although in the case of spherical
particles, the high coercivity that fine particles materials have,
compared with the same material in bulk [1].

In fact, if the particles are fine enough to be single domain, and
magnetic interactions between particles have a negligible effect,
each individual particle can reverse its magnetization only by

rigid rotation of the magnetization vector of the particle as a
whole, a process requiring a large reversed field (rather than by
domain wall displacement, which is the predominant process in
bulk materials at small fields) [1].

The main limitation of the theorem is that it is applicable to
spherical particles whereas, real particles are most of the time
elongated [2]. Motivated by this, Aharoni [2], by using the same
mathematical reasoning as Brown, was able to extend the
Fundamental Theorem to the case of a prolate spheroid.

The main objective of this paper is to extend, by means of
Poincaré inequality for the Sobolev space H1

ðO,R3
Þ [3,4] and some

properties of the magnetostatic self-energy [5–8], the fundamen-
tal theorem of Brown to the case of a general ellipsoid. In the
sequel, it is rigorously proven that for an ellipsoidal particle, with
diameter d, there exists a critical size (diameter) dc such that for
dodc the uniform magnetization states are the only global
minimizers of the micromagnetic free energy functional.

A lower bound for dc is then given in terms of the demagnetiz-
ing tensor eigenvalues [9] (the so called demagnetizing factors

[10]), which completely characterize the induced magnetic field
inside ellipsoidal particles, thanks to Payne and Weinberger result
on the best Poincaré constant [3,4].

2. Formal theory of micromagnetic equilibria

We start our discussion by recalling basic facts about micro-
magnetic theory. According to micromagnetics the local state of
magnetization of matter is described by a vector field, the
magnetization m, defined over O which is the region occupied
by the body.
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The stable equilibrium states of magnetization are the mini-

mizers of the so called Gibbs–Landau free energy functional
associated with the magnetic body. In dimensionless form, and
for zero applied field, this functional can be written as [1,9,11,12]:

GLðm,OÞ ¼
1

9O9

Z
O

‘2
ex

2
9Dm92

�
1

2
hd½m� �m

� �
dv, ð1Þ

where m : O-S2 is a vector field taking values on the unit sphere
S2 of R3, and 9O9 denotes the volume of the region O, and ‘2

ex is a
positive material constant.

The constraint on the image of m is due to the following
fundamental assumption of the micromagnetic theory: a ferro-
magnetic body well below the Curie temperature is always locally
saturated. This means that the following constraint is satisfied:

9m9¼ 1 a:e: in O: ð2Þ

Global micromagnetic minimizers correspond to vector fields
which minimize the Gibbs–Landau energy functional (1) in the
class of vector fields which take values on the unit sphere S2.

3. The magnetostatic self-energy. Mathematical properties of
the dipolar magnetic field. The Brown lower bound

The energy functional GL given by Eq. (1) is the sum of two
terms: the exchange energy and the Maxwellian magnetostatic
self-energy (the second term).

The magnetostatic self-energy is the energy due to the (dipolar)
magnetic field hd½m� generated by m. From the mathematical
point of view, assuming O to be open, bounded and with Lipschitz
boundary, and denoting with wOm the trivial extension of the
magnetization m to all the space R3, the induced magnetic field
can be defined as the unique vector field hd½m�AL2

ðR3,R3
Þ which

satisfies (in the sense of distributions on R3) the following
Maxwell’s [7,9]:

divðhd½m�þwOmÞ ¼ 0

curl hd½m� ¼ 0:

(
ð3Þ

We recall that the operator hd which to every wOmAL2
ðR3,R3

Þ

associates the unique solution hd½m� of the above Maxwell’s
equations, is a bounded, self-adjoint and negatively semidefined
linear operator with JhdJop ¼ 1, when endowed with the L2

ðO,R3
Þ

scalar product given by

ðm,uÞO ¼
Z
O

m � u dv: ð4Þ

Self-adjointness means that for every m,uAL2
ðO,R3

Þ the
following equality holds:

ðhd½m�,uÞO ¼ ðm,hd½u�ÞO, ð5Þ

while semidefinite negativeness states that, for every
mAL2

ðO,R3
Þ, we have

�ðhd½m�,mÞOZ0: ð6Þ

Obviously the semidefinite negativeness of the induced magnetic
field assures the positiveness of the Gibbs–Landau free energy
functional.

Finally let us recall the following Brown lower bound to the
magnetostatic self-energy [1,5,6] as reported by himself in
Ref. [1].

Consider an arbitrary irrotational vector field h which is
defined over the whole space R3 and is regular at infinity. Under
these assumptions Brown proved that:

�
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O

h �m dv�
1

2

Z
R3
9h92

dvr�
1

2

Z
O

hd½m� �m dv, ð7Þ

the equality holding if and only if h¼ hd½m�.

In other terms, for every irrotational and regular at infinity
vector field h : R3-R3, the left hand side of Eq. (7) does not
exceed the magnetostatic self-energy and becomes equal to it
only when h is everywhere equal to hd½m�. It is worthwhile
emphasizing that the vector field h in this inequality needs not be
related in any way to m [2].

A very useful particular case of this lower bound can be
obtained by letting h¼ hd½u� with uAL2

ðO,R3
Þ. In this way we

arrive at the following form of the Brown lower bound which we
state here as a lemma:

Lemma 1. Let ODR3 be open, bounded and with Lipchitz bound-

ary. For every u,mAL2
ðO,R3

Þ:

�ðhd½u�,mÞOþ
1
2 ðhd½u�,uÞOr�1

2ðhd½m�,mÞO, ð8Þ

with equality if and only if u¼m.

4. The case of ellipsoidal geometry. Demagnetizing tensor

Since hd is a linear operator, the restriction of hd to the
subspace UðO,R3

Þ of constant in space vector fields can be
identified with a second order tensor known as the effective

demagnetizing tensor of O and defined by [9,10]:

Neff ½m� ¼ �

Z
O

hd½m� dv¼�9O9/hd½m�SO, ð9Þ

where mAUðO,R3
Þ and for all uAL2

ðO,R3
Þ we have denoted with

/uSO ¼
1

9O9

Z
O

u dv, ð10Þ

the average of u over O. The tensor Neff is known in literature as
the effective demagnetizing tensor of O, where the qualifier
effective is used as a reminder of the fact that Neff is related to
the average of hd½m� over O [9,10].

In addition to that, a well known result of potential theory,
states that when O is an ellipsoid and mAUðO,R3

Þ also hd½m�A
UðO,R3

Þ; i.e. if O is an ellipsoid and m is constant, then hd½m� is
also constant in O.

In physical terms this means that uniformly magnetized
ellipsoids induce uniform magnetic fields in their interiors. In
this case the effective demagnetizing tensor Neff is pointwise
related to m since the relation (9) becomes:

Neff ½m� ¼ �hd½m�: ð11Þ

In the rest of the present paper we will indicate with Nd the
demagnetizing tensor associated to an ellipsoidal particle O.

Obviously, from Eq. (6), we get that the quadratic form
QdðmÞ ¼Nd½m� �m is a definite positive quadratic form. We will
indicate with

m2 ¼ inf
uAR3

�f0g

QdðuÞ

9u92
, ð12Þ

the first eigenvalue associated to this quadratic form, i.e. the
minimum demagnetizing factor for the ellipsoid O. This quantity
can be expressed analytically in terms of elliptic integrals [10].

It is important to stress that the eigenvalues of the quadratic
form Qd are shape-dependent but not size-dependent so that,
when the volume 9O9 is changed by preserving the shape of the
ellipsoid, m2 does not change.

5. The exchange energy and the Poincaré inequality.
Null average micromagnetic minimizers

The exchange energy (the first term in Eq. (1)), energetically
penalizes spatially non-uniform magnetization states: it takes
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