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a b s t r a c t

The quantification of rate-dependent ferromagnetic hysteresis is important in a range of applications

including high speed milling using Terfenol-D actuators. There exist a variety of frameworks for

characterizing rate-dependent hysteresis including the magnetic model in Ref. [2], the homogenized

energy framework, Preisach formulations that accommodate after-effects, and Prandtl–Ishlinskii

models. A critical issue when using any of these models to characterize physical devices concerns

the efficient estimation of model parameters through least squares data fits. A crux of this issue is the

determination of initial parameter estimates based on easily measured attributes of the data. In this

paper, we present data-driven techniques to efficiently and robustly estimate parameters in the

homogenized energy model. This framework was chosen due to its physical basis and its applicability

to ferroelectric, ferromagnetic and ferroelastic materials.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

The quantification of rate-dependent effects, including accom-
modation or reptation, magnetic after-effects, and eddy current
effects, is crucial when employing magnetic transducers in high
drive regimes. There exist a number of modeling frameworks that
incorporate these effects, for materials acting in hysteretic
regimes, including the magnetic models of Ref. [2], homogenized
energy models (HEM) [9,10], extended Preisach models [5,7], and
rate-dependent Prandtl–Ishlinskii models [1]. A critical issue
when employing any of these frameworks concerns the robust
determination of model parameters based on least squares fits to
data. In this paper, we present a data-driven technique to obtain
initial parameter estimates for the homogenized energy model for
ferromagnetic hysteresis. We employ this framework due to its
energy basis at mesoscales, its ease of implementation and
relative accuracy for a range of operating conditions, the degree
to which model parameters can be correlated with physical
properties of measured data, and its ubiquity for ferromagnetic,
ferroelectric (e.g., PZT), and ferroelastic (e.g., SMA) materials.

We focus on rate-dependent effects and creep behavior asso-
ciated with magnetic after-effects [4] since, for the transducer
designs and data under consideration, eddy current losses have
been minimized. The extension of these models and data-driven
parameter estimation techniques to incorporate eddy currents is
under current investigation.

A short description of the homogenized energy model is
provided in Section 2. In Section 3, we detail the data-driven
techniques to efficiently and robustly estimate parameters in the
homogenized energy model. In Section 4, we compare the model
fits to experimental data for both steel and nickel rods.

2. Homogenized energy model for magnetic hysteresis

As detailed in Refs. [9,10], the homogenized energy model for
ferromagnetic materials is constructed in two steps. In the first,
a Gibbs energy is balanced with a relative thermal energy to
construct a local average magnetization relation. The effects of
material and field nonhomogeneities are subsequently incorpo-
rated by assuming that local coercive and interaction fields
are manifestations of underlying densities rather than constant
parameters. Stochastic homogenization in this manner yields a
macroscopic model that is accurate for a variety of operating
regimes and is efficient to construct and implement.

For 1801 moment switching, we employ the Gibbs energy

GðH,MÞ ¼cðMÞ�HM, ð1Þ

where H and M respectively denote the field and magnetization,
and the Helmholtz energy is
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Here Z¼ dH=dM after switching and the remanent magnetization
MR are two of the parameters to be identified.

As detailed in Refs. [9,10], thermal relaxation is accommodated
by balancing the Gibbs energy and relative thermal energy kT=V

using the Boltzmann relation:

mðGÞ ¼ Ce�GV=kT , ð2Þ

where k is the Boltzmann constant and T is the temperature in
degree Kelvin. The reference volume V reflects the definition of
magnetization as magnetic moments per unit volume and yields a
relative thermal energy based on the Gibbs energy density.

Approximation of the relations

/MþS¼ c
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MI
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and

/M�S¼ c
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Me�GðH,MÞV=kT dM ð4Þ

yields the relation

M ¼ 2MRxþ þ
HþHI

Z
�MR ð5Þ

for the local average magnetization. Here xþ denotes the fraction
of positively oriented moments which evolve via the differential
equation

_xþ ¼�ðpþ�þp�þ Þxþ þp�þ , ð6Þ

involving the likelihoods of moments switching from negative to
positive ðpþ�Þ and conversely ðp�þ Þ. As detailed in Ref. [3], we
employed the likelihood relations

pþ� ¼
g1

erfcxðHþ Þ
, p�þ ¼

g1

erfcxðH�Þ
, ð7Þ

where erfcxðxÞ ¼ ex2
ð2=

ffiffiffiffi
p
p
Þ
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x e�t2
dt (the scaled complementary

error function), Hþ ¼�g2 HcþðHþHIÞð Þ, H� ¼�g2 Hc�ðHþHIÞð Þ,
g1 ¼ ð1=tÞ
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p
Þ. Here t is the relaxa-

tion time, or the reciprocal of the frequency at which moments
attempt to switch.

To incorporate the effects of polycrystallinity, material non-
homogeneities, and variable interaction fields, we subsequently
assume that local coercive and interaction fields are manifesta-
tions of underlying densities rather than constant coefficients.
This yields the macroscopic magnetization relation:

MðHðtÞÞ ¼

Z 1
0

Z 1
�1

MðHðtÞþHI;HcÞ � ncðHcÞnIðHIÞ dHI dHc , ð8Þ

where ncðHcÞ and nIðHIÞ are densities associated with the coercive
and interaction fields. Various quadrature techniques, including

midpoint or Gaussian rules, can be used to approximate two
integrals in Eq. (8).

Following Ref. [6], we employ expansions

ncðHcÞ ¼ c1

Xk1 ,Ma

k ¼ k0 ,m ¼ 1

ak,mfk,mðHcÞ, ð9Þ

nIðHIÞ ¼ c2

Xk1

k ¼ k0

bkckðHIÞ, ð10Þ

where the basis functions fk,mðHcÞ and ckðHIÞ are lognormal and
normal distributions and the coefficients ak,m and bk are deter-
mined through a least squares fit to data. The constants
c1 ¼ ð

Pk1 ,Ma
k ¼ k0 ,m ¼ 1 ak,mÞ

�1 and c2 ¼ ð
Pk1

k ¼ k0
bkÞ
�1 ensure integration

to unity. Examples of the two densities are shown in Fig. 1.
The coercive field basis functions are taken to be lognormal

distributions:
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whose corresponding normal distribution has mean ln Hcm and
standard deviation sck

¼ 2ksc. As detailed in Section 3, one of the
Hcm (e.g., m¼2) can be obtained directly from the coercive field of
the data. Once Hc2

is determined, Hc1
and Hc3

can be determined
by, for example, letting Hc1

¼ 1:5Hc2
and Hc3

¼ 0:5Hc2
.

The interaction field basis functions are taken to be normal
distributions:
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1
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with mean 0 and standard deviation sIk
¼ 2ksI for sI where sI can

be obtained from the data.

3. Data-driven parameter estimation

3.1. Optimization method

The parameters to be estimated are

q¼ fZ,MR,Hc2
,sI ,sc ,g1,g2,ak,m,bkg: ð13Þ

To ensure the accuracy of nested, biased minor loops, we take
k¼�2,�1,0,1, and m¼ 1,2,3. For simpler operating regimes,
fewer values can be used.
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Fig. 1. (a) Sampled lognormal density nc with 80 points. (b) Sampled normal density nI with 80 points.
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