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The quantification of rate-dependent ferromagnetic hysteresis is important in a range of applications
including high speed milling using Terfenol-D actuators. There exist a variety of frameworks for
characterizing rate-dependent hysteresis including the magnetic model in Ref. [2], the homogenized
energy framework, Preisach formulations that accommodate after-effects, and Prandtl-Ishlinskii
models. A critical issue when using any of these models to characterize physical devices concerns

the efficient estimation of model parameters through least squares data fits. A crux of this issue is the
determination of initial parameter estimates based on easily measured attributes of the data. In this
paper, we present data-driven techniques to efficiently and robustly estimate parameters in the
homogenized energy model. This framework was chosen due to its physical basis and its applicability
to ferroelectric, ferromagnetic and ferroelastic materials.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The quantification of rate-dependent effects, including accom-
modation or reptation, magnetic after-effects, and eddy current
effects, is crucial when employing magnetic transducers in high
drive regimes. There exist a number of modeling frameworks that
incorporate these effects, for materials acting in hysteretic
regimes, including the magnetic models of Ref. [2], homogenized
energy models (HEM) [9,10], extended Preisach models [5,7], and
rate-dependent Prandtl-Ishlinskii models [1]. A critical issue
when employing any of these frameworks concerns the robust
determination of model parameters based on least squares fits to
data. In this paper, we present a data-driven technique to obtain
initial parameter estimates for the homogenized energy model for
ferromagnetic hysteresis. We employ this framework due to its
energy basis at mesoscales, its ease of implementation and
relative accuracy for a range of operating conditions, the degree
to which model parameters can be correlated with physical
properties of measured data, and its ubiquity for ferromagnetic,
ferroelectric (e.g., PZT), and ferroelastic (e.g., SMA) materials.

We focus on rate-dependent effects and creep behavior asso-
ciated with magnetic after-effects [4] since, for the transducer
designs and data under consideration, eddy current losses have
been minimized. The extension of these models and data-driven
parameter estimation techniques to incorporate eddy currents is
under current investigation.
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A short description of the homogenized energy model is
provided in Section 2. In Section 3, we detail the data-driven
techniques to efficiently and robustly estimate parameters in the
homogenized energy model. In Section 4, we compare the model
fits to experimental data for both steel and nickel rods.

2. Homogenized energy model for magnetic hysteresis

As detailed in Refs. [9,10], the homogenized energy model for
ferromagnetic materials is constructed in two steps. In the first,
a Gibbs energy is balanced with a relative thermal energy to
construct a local average magnetization relation. The effects of
material and field nonhomogeneities are subsequently incorpo-
rated by assuming that local coercive and interaction fields
are manifestations of underlying densities rather than constant
parameters. Stochastic homogenization in this manner yields a
macroscopic model that is accurate for a variety of operating
regimes and is efficient to construct and implement.

For 180° moment switching, we employ the Gibbs energy

G(H,M) = yy(M)—HM, (1)

where H and M respectively denote the field and magnetization,
and the Helmholtz energy is

1
i”(M+MR)2’ M<-M,
1

Y(M) = EW(M*MR)Z, M=M,
1 M2
210M=Mo) (=M ). M1 <M.
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Here n = dH/dM after switching and the remanent magnetization
My are two of the parameters to be identified.

As detailed in Refs. [9,10], thermal relaxation is accommodated
by balancing the Gibbs energy and relative thermal energy kT /V
using the Boltzmann relation:

W(G) = Ce CV/KT (2)

where k is the Boltzmann constant and T is the temperature in

degree Kelvin. The reference volume V reflects the definition of

magnetization as magnetic moments per unit volume and yields a

relative thermal energy based on the Gibbs energy density.
Approximation of the relations

(M4 > =c . Me~CHMV/KT gar ‘)
h 1
and
—M;
(M_>=c / Me—CHMV/KT qnr @

yields the relation

H+H1

M=2MRX+ + —Mpg (5)

for the local average magnetization. Here x . denotes the fraction
of positively oriented moments which evolve via the differential
equation

Xy =—@r-+D-1 )Xy +DP— 1, (6)

involving the likelihoods of moments switching from negative to
positive (p,_) and conversely (p_.). As detailed in Ref. [3], we
employed the likelihood relations
71 71

Pi-= erfcx(H, )’ P+ = erfcx(H_)’ )
where erfcx(x) = e¥ (2//T) I e~ dt (the scaled complementary
error function), H; = —y,(Hc+(H+H)), H_=—y,(H.—(H+H))),
v, =(1/1)+/(2Vn/7kT) and vy, = +/(V/2kTn). Here 7 is the relaxa-
tion time, or the reciprocal of the frequency at which moments
attempt to switch.

To incorporate the effects of polycrystallinity, material non-
homogeneities, and variable interaction fields, we subsequently
assume that local coercive and interaction fields are manifesta-
tions of underlying densities rather than constant coefficients.
This yields the macroscopic magnetization relation:

M(H(t) = /0 / MH® +Hi:Ho) x ve(Hovi(H) dH dHe, — (8)

where v(H;) and v,(H)) are densities associated with the coercive
and interaction fields. Various quadrature techniques, including
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midpoint or Gaussian rules, can be used to approximate two
integrals in Eq. (8).
Following Ref. [6], we employ expansions

ki,M,,

veHo=c1 Y

k=kom=1

Ock,md)k.m(HC)v (9)

kq
VitHN) =2 > Bii(H), (10)

k = ko

where the basis functions ¢, ,,(Hc) and v, (H,) are lognormal and
normal distributions and the coefficients oy, and f, are deter-
mined through a least squares fit to data. The constants
1 =M oy %em) " and ¢ =(XF_, Bi) ! ensure integration
to unity. Examples of the two densities are shown in Fig. 1.

The coercive field basis functions are taken to be lognormal

distributions:

an

In Ho.—In H, )?
bem(Ho) = (nH.~InHe,) )

1
G, ~/2TH, exp < 202
whose corresponding normal distribution has mean In H,, and
standard deviation o, = 2*c.. As detailed in Section 3, one of the
H,, (e.g., m=2) can be obtained directly from the coercive field of
the data. Once H,, is determined, H, and H,, can be determined
by, for example, letting H., = 1.5H,, and H¢, = 0.5H,,.
The interaction field basis functions are taken to be normal
distributions:

N
k I_alk«/2n 207 )’

with mean 0 and standard deviation g;, = 2"0, for o; where o can
be obtained from the data.

(12)

3. Data-driven parameter estimation
3.1. Optimization method

The parameters to be estimated are
q={1.Mr,Hc,,01,0¢,71,V2,%m:Br}- (13)

To ensure the accuracy of nested, biased minor loops, we take
k=-2,-1,0,1, and m=1,2,3. For simpler operating regimes,
fewer values can be used.
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Fig. 1. (a) Sampled lognormal density v. with 80 points. (b) Sampled normal density v; with 80 points.
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