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The authors have investigated theoretically the dwell time of Dirac fermions tunneling through

electrostatic square barrier in monolayer graphene, including asymmetrical and symmetrical potential

barriers. It is found that the incident angle determines the critical incident energy. When the incident

energy is larger than the critical incident energy, the dwell time saturate with the increase of the barrier

thickness. But when the incident energy is smaller than the critical incident energy, the dwell time

oscillates with the increase of the barrier thickness. The behaviors of oscillation and saturation of the

dwell time are related with the transmission probability. These results may be helpful for the basic

physics and potential application of graphene based electronic devices.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

The question of how long it takes a particle to tunnel through
a potential barrier is one that has occupied physicists since the
early days of quantum mechanics [1,2]. The tunneling time of
a particle through a barrier or well is also a very important para-
meter in many electronic devices, for example metal–insulator–
metal thin film sandwiches, and thence has received much attention
in the past several years. There are two important qualities called
group delay time tg and dwell time td, respectively. The group delay
time tg can be expressed in terms of the derivative of the phase shift
with respect to energy [3], and Büttiker and Landauer thought the
group delay was not a physically meaningful quantity with which
to characterize tunneling dynamics [4]. The dwell time was first
introduced by Smith in a potential scattering context, which was
defined as the difference between the time spent by a particle in the
region of the scattering potential and the time spent in the same
region in the absence of the scattering potential [5]. Hartman found
that the group delay time tg for a particle tunneling through a
rectangular barrier is independent of the barrier thickness if the
barrier is opaque, which is often referred to as the Hartman effect [4].
Some experiments [6–10] have verified this phenomenon and gave
a possible reason that the wavepacket is merely reshaped in the
tunneling process. And Winful considers the delays are not propaga-
tion delays but the momentary capture and release of a tunneling
particle [11–14].

Graphene is a one-atom-thick planar sheet of carbon atoms
that are densely packed in a honeycomb crystal lattice [15]. The

fabrication of graphene overthrows the prediction that strictly two-
dimensional crystal cannot exist in finite temperature because of
thermal disturbance [16]. Graphene has many novel properties and
potential applications, for example, the prediction and observation
of half-integer quantum hall effect [17], finite conductivity at zero
charge carrier concentration [18], perfect quantum tunneling effect
[19], and ultrahigh carrier mobility [20]. And the quasiparticles
called massless Dirac fermions can be viewed as electrons that lose
their rest mass, which are described by the massless Dirac equation
rather than the Schrödinger equation in conventional semiconductor
structures. The Hartman effect in graphene has been investigated
involving in quantum tunneling through single and double
symmetric square barriers [21,22] in a single layer graphene,
and the authors find that there is Hartman effect in graphene. But
Dragoman et al. shows that there is no Hartman effect due to
Klein paradox for electrons traversing electrostatic barriers in
graphene [23]. They found the electrostatic barriers cannot
confine charge carriers because of no bandgap in graphene. Their
essential difference from the previous results [21,22] is that they
found the imaginary wavenumbers do not exist in graphene. On
the other hand, the dwell time in graphene-based magnetic
barrier nanostructures including the square magnetic barrier
and the d-function magnetic barrier has been investigated [24],
and the authors found that both the dwell time and the transmission
probability showed remarkable anisotropy varying in different mag-
netically modulated configurations.

In this paper, we study theoretically the dwell time in a single
layer graphene, where the potential barriers are asymmetric. We
calculate the dwell time td and the calculation results show that
there is obvious saturation of the dwell time in graphene asymmetric
barriers, and when the asymmetric barriers tend to symmetric
barriers there is still saturation effect. What determines the existence

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/physb

Physica B

0921-4526/$ - see front matter & 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.physb.2011.09.040

n Corresponding author.

E-mail address: jccao@mail.sim.ac.cn (J.C. Cao).

Physica B 407 (2012) 281–285

www.elsevier.com/locate/physb
www.elsevier.com/locate/physb
dx.doi.org/10.1016/j.physb.2011.09.040
mailto:jccao@mail.sim.ac.cn
dx.doi.org/10.1016/j.physb.2011.09.040


of the saturation of dwell time are the incident energy and angle.
This paper is organized as follows. We give the theoretical model and
the calculation method in Section 2. And in Section 3 we show the
numerical results and discussions. Finally, we give the conclusions in
Section 4.

2. The formula and model of the dwell time

Now we consider a monolayer graphene sheet in the (x, y)
coordinate plane, where a gate electrode is patterned to imple-
ment a rectangular potential barrier with the height V1 and add a
bias between the barrier to make the right potential of the barrier
V2. The potential barrier is shown schematically in Fig. 1, where
the thickness of the barrier is D along the y direction between the
x¼0 and x¼D planes. In our study, the Dirac fermion with energy
E and momentum ‘k is incident from the left side with incident
angle y on the potential barrier. The wave function of a low
energy excited electron, which locates in the vicinity of the Dirac
point satisfies the two-dimensional time-independent Dirac-like
equation. The Hamiltonian of the massless Dirac fermion in the
low energy region reads as: Ĥ ¼�i‘vFr �= [20], where ‘ is the
reduced planck constant, vF¼106 m/s is the Fermi velocity, k is
the wave vector, and r¼ ðrx,ryÞ are the Pauli spin matrices. The
two-component electron wavefunction cðx,yÞ is given by the two-
dimensional massless Dirac equation, and the two-component
wavefunctions of the left, middle and right region CIðx,yÞ, CIIðx,yÞ
and CIIIðx,yÞ are described by

CIðx,yÞ ¼
1ffiffiffi
2
p
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" #
eikx1xþ ikyyþ
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where kx1 ¼ ðE=‘vF Þ cosðyÞ and ky ¼ ðE=‘vF Þ sinðyÞ are the perpen-
dicular and the parallel wave vector components of the left side,
y is the incident angle,

kx2 ¼ SgnðE�V1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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‘vF
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are the perpendicular wave vector components of the middle and
right side, respectively. Here we only focus on the situation where
the energy of the incident electron E is lower than the barrier
height V1.

In one-dimensional quantum system it has been proved that
the dwell time is equal to the group delay time minus a self-
interference delay [12]. The relationship between the group delay
time and the dwell time in graphene through a symmetric barrier

was studied by Wu et al. [21]. They found that due to the linear
dispersion relation, the group delay time equals the dwell time
[21]. Based on the approach, we study the relationship between
the group delay time and the dwell time through an asymmetric
barrier in graphene. The Hamiltonian is Ĥ ¼ vF~s � p̂, where vF �

106 m=s is the Fermi velocity, and ~s is Pauli’s matrices. We make
t¼ 9t9eift and r¼ 9r9eifr , where ft and fr are the transmission and
reflection phase angles. The definitions of the group delay time
and the dwell time are tg ¼ 9t92

� ‘dfo=dEþ9r92
� ‘dfr=dE, and

td ¼
R D

0 9cðxÞ92
dx=jin, where fo ¼ftþkx3D, and jin ¼ vF cosðyÞ is

the flux of incident particles [5,21]. In the presence of electrostatic
potential V, the wavefunction equation reads as

ðĤ�EÞc¼ ð T
!
þV�EÞc¼ 0, ð2Þ

where T
!
¼�i‘vF~s � r

!
. We can obtain cþc¼�i‘vF r �

ðcþ~s@c= @EÞ. So according to the definition of the dwell time
we obtain
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The dwell time is as follows:
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We find that the dwell time is also identical to the group delay time
in graphene asymmetrical barrier, which means the self-interference
delay is zero. In the following, we calculate the dwell time through
the potential barrier using the following general formula [5,21]:

td ¼

R D
0 9c92

dx

vF cos y
: ð4Þ

According to the boundary conditions, the wavefunctions at
x¼0 and D should be continuous. We can obtain all of the above
coefficients of the functions in Eq. (1). In order to obtain the dwell
time we only concern the wavefunction in the barrier region, so
we just need to obtain a and b in Eq. (1) as follows:

a¼
2kx1ðE�V1ÞnC2

C1nC2þC3nC4ne2ikx2D
,

b¼
2kx1ðE�V1ÞnC4

C1nC2ne�2ikx2DþC3nC4
,
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where

C1 ¼ ðE�V1Þðkx1�ikyÞþEðkx2þ ikyÞ,

C2 ¼ ðE�V2Þðkx2�ikyÞþðE�V1Þðkx3þ ikyÞ,

C3 ¼ ðE�V1Þðkx1�ikyÞ�Eðkx2�ikyÞ,

C4 ¼ ðE�V2Þðkx2þ ikyÞ�ðE�V1Þðkx3þ ikyÞ: ð6Þ

And we can obtain 9c92
¼cþc in the barrier region as follows:
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Fig. 1. A schematic diagram for an asymmetric square barrier in graphene.
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