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a b s t r a c t

We study a class of models with long-range repulsive interactions of the generalized Coulomb form

VðrÞ � 1=ra. We show that decreasing the interaction exponent in the regime aod dramatically

depresses the charge ordering temperature Tc in any dimension dZ2, reflecting the strong geometric

frustration produced by long-range interactions. A nearly frozen Coulomb liquid then survives in a

broad pseudogap phase found at T4Tc , which is characterized by an unusual temperature dependence

of all quantities. In contrast, the leading critical behavior very close to the charge-ordering temperature

remains identical as in models with short-range interactions.

Published by Elsevier B.V.

1. Introduction

The phenomenon of screening has long been known in presence of
long-range Coulomb interactions, and it is generally expected to
render the observed behavior very similar to that of systems with
short-range interactions. Indeed, recent computational work has
investigated the critical behavior close to charge ordering in lattice
Coulomb systems [1], suggesting the Ising universality class. In
addition, analytical arguments have been presented [2] supporting
this view, for a broad class of lattice models with the generalized
Coulomb interaction of the form VðrÞ � 1=ra in dZ2 dimensions. We
should mention, however, that long-range interactions are generally
expected to produce mean-field like critical behavior for doaodn,
while for dodnoa one expect short-range critical behavior. The
nontrivial effect of long-range interactions upon the critical behavior
is possible only for a4d, because in this regime the interaction is
‘‘integrable’’ (no neutralizing background is needed), and screening
becomes inoperative.

Should one expect any interesting or novel physics in Cou-
lomb-like models (aod), in comparison to the short-range situa-
tion? Our work confirms that these models indeed feature
conventional critical behavior in the narrow critical region
T � Tc. We show, however, that a striking new behavior is
uncovered in a broader temperature interval, reflecting strong
geometric frustration inherent to such long-range interactions.
First, we find a dramatic decrease of melting temperature of
lattice Coulomb gas as a result of the level of frustration in the
system. This can be easily understood by noting that our lattice
Coulomb gas maps into an antiferromagnetic Ising model with

long-range interactions. Here, all the spin tend to anti-align with
all other spins, but this cannot be achieved for very long interac-
tions (aod), resulting in very low melting temperature. Indeed,
for half-filled Coulomb systems (a¼ 1), the melting temperature
Tc is one order of magnitude smaller [3] than the generalized
Coulomb energy Ec ¼ e2=a, where a is the lattice constant. Con-
tinuum models [4–6] show an even more dramatic behavior, with
the melting temperature being as much as two orders of magni-
tude smaller then the Coulomb energy. This striking behavior,
although well documented in several model studies, is not widely
appreciated or understood in simple terms.

The second robust feature of these models, which has only
recently been discovered [7], is the emergence of the ‘‘pseudogap
phase’’. This pseudogap phase is a specific feature of long-range
type interaction with aod, and is observed in a broad tempera-
ture range Tc oToTn (see Fig. 1), where Tn is the pseudogap
temperature where the gap in the single particle density of state
(DOS) starts to open. We show that the physical Coulomb
interaction (a¼ 1) lays deep in the regime of very long range
interaction a-0, the regime where our analytical ‘‘extended
dynamical mean-field theory’’ (EDMFT) approach becomes is
asymptotically exact [7]. This observation explains the surprising
accuracy of this analytical scheme both when applied to clean
models [7], and in previous applications to Coulomb glasses [8].

2. Model and EDMFT approach

Our model is described by the Hamiltonian of particles living
on a half-filled hypercube lattice (lattice spacing a) that interact
via Coulomb-like interaction VðRijÞ � ðRij=aÞ�a,

H¼
1

2

X
ij

VðRijÞðni�/nSÞðnj�/nSÞ: ð1Þ
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Physica B 407 (2012) 1711–1714

www.elsevier.com/locate/physb
www.elsevier.com/locate/physb
dx.doi.org/10.1016/j.physb.2012.01.013
mailto:pramudya@magnet.fsu.edu
mailto:terletska@magnet.fsu.edu
mailto:stratos@martech.fsu.edu
mailto:vlad@martech.fsu.edu
dx.doi.org/10.1016/j.physb.2012.01.013


Here Rij is the distance between lattice sites i and j expressed in
the units of the lattice spacing. In general, our unit of energy the
nearest-neighbor repulsion Ec ¼ Vð1Þ. We focus on the half-filled
system /nS¼ 1=2 that maps the problem into ‘‘antiferromag-
netic-like’’ Ising model. In addition to numerically exact (classical)
Monte Carlo simulations, we also utilize an analytical approach,
the so-called extended dynamical mean field theory (EDMFT)
[9,10] which is expected [7] to be accurate for very long interac-
tion ða51Þ, where the effective coordination number becomes
very large. The inter-site charge correlations are included in this
approach, and are treated on the same footing as the local ones
[10]. Here, the lattice problem is mapped into an effective
impurity problem embedded in a self-consistently determined
bath containing both fermionic and bosonic excitations [9,10]. In
our case, this bosonic bath describes the plasmon excitations
induced by the inter-site charge correlations.

In this paper, we focus on the classical limit, where the origin
of the pseudogap phase is most pronounced and the accuracy of
the EDMFT can be tested directly with simple classical Monte
Carlo simulations. Here, the density–density correlation function
becomes

wðkÞ ¼ ð4þDþbVkÞ
�1

ð2Þ

and the self-consistent condition

1

4
¼

Z
denðeÞð4þDþbeÞ�1, ð3Þ

where we define the classical plasmon-mode spectral density (Fig. 2)
nðeÞ ¼

P
kdðe�VkÞ. By solving numerically the self-consistent condi-

tion in Eq. (3) using the spectral density nðeÞ, the T dependence of
dimensionless parameter D(T) is found to be power-law dependent
(Fig. 3). The analytic solution can be derived at the limit of a5d,
spectral density becomes nðeÞIdðe�e0Þ, where e0 ¼ VQ (Q ¼ ðp,pÞ in
2D, and Q ¼ ðp,p,pÞ in 3D) is the minimum energy in momentum
space (center of Brillouin zone). By solving Eq. (2) at this limit, we find
the analytic solution DðTÞ � T�1VQ . The result qualitatively holds all
the way to a� d as shown in Fig. 3.

The charge ordering temperature TcðaÞ is defined by the
wðkÞ-1 at the corresponding ordering wave vector k¼Q; in
d¼3 the system forms a BCC structure, and a checkerboard patter
in d¼2. The depression of melting temperature as a function of
interaction parameter a51 can be understood in simple way by
noting that the spectral density nðeÞ has a simple scaling form

nðeÞ ¼ a�1 ~nfðe�e0Þ=ag ð4Þ

as shown in Fig. 2. The sharp peak of ðe�e0Þ below characteristic
energy scale enðaÞ � a, physically correspond to ‘‘sheer’’ plasmon
modes with wave vector k�Q [5,11]. This energy scale plays a
role of an effective Debye temperature. This tells us why the
ordering temperature decreases

TcðaÞ ¼ a
Z

de ~nðeÞ=e� enðaÞ � 0:1a ð5Þ

in agreement with the estimation of Lindermann criterion applied
to the sheer mode. At the lowest energy near e0 the dispersion
relation assumes the standard form nðeÞ � eðd�2Þ=2, same as for
short-range interactions. This can also be understood from the
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Fig. 1. Phase diagram of the half-filled classical D¼3 lattice model with interac-

tions VðRÞ ¼ R�a . The charge ordering temperature TcðaÞ � a, as obtained from

EDMFT theory (full line) and Monte Carlo simulations (open symbols). The

pseudogap temperature Tn (dashed line) remains finite as a-0; a broad pseudo-

gap phase emerges at ard. We also show TSR
c � 1 for the same model with short-

range interactions (dotted line). The inset shows corresponding single particle

density of state (DOS) for different temperatures. The EDMFT results (dashed line)

show excellent agreement with Monte Carlo simulation (solid line) above the

melting temperature Tc [7,8].
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Fig. 2. Scaling behavior of the spectral density nðeÞ of plasmon modes on a 3D

hypercubic lattice. The low-energy branch of the spectrum, which describes the

‘‘sheer’’ charge fluctuations close to the ordering wavevector, features an

a-dependent energy scale, one that sets the melting temperature Tc � a. The

scaling becomes exact for very long interaction range a51, but is approximately

valid for all ar1, explaining the simple a-dependence of all quantities.
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Fig. 3. The power law behavior of D(T) for different interaction range a. In the

limit of a-0, we find parameter DðTÞ � T�1, both in d¼2 and d¼3.
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