
Cyclotron excitations in pure bilayer graphene: Electron–hole asymmetry
and Coulomb interaction

V.E. Bisti a,b,n, N.N. Kirova b

a Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
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a b s t r a c t

Inter-Landau-level transitions in the bilayer graphene in high perpendicular magnetic field at the

filling-factor n¼ 0 have been studied. The next-nearest-neighbor transitions, energy difference between

dimer and non-dimer sites, and layer asymmetry are included. The influence of Coulomb interaction is

taken into account. The magnetoplasmon excitations in bilayer graphene at small momenta are

considered within the Hartree–Fock approximation. The asymmetry in cyclotron resonance of clean

bilayer graphene is shown to depend on magnetic field. At lower magnetic fields the energy splitting in

the spectrum is due to electron–hole one-particle asymmetry while at higher magnetic fields it is due

to Coulomb interaction. For the fully symmetric case with half-filled zero-energy levels the energy

splitting proportional to the energy of Coulomb interaction is found.

& 2012 Elsevier B.V. All rights reserved.

The bilayer graphene is the unique object which combines the
parabolic dispersion law of quasiparticles near the zero energy
point with the chirality exhibiting Berry phase 2p [1]. This picture
is obtained with the tight-binding Hamiltonian for electrons
taking into account only nearest-neighbor transitions; the one-
electron spectrum is symmetric around zero energy. Taking into
account next-nearest-neighbor transitions results in the asym-
metry of electron spectrum around zero-energy point [2].

One-particle Landau levels in the bilayer graphene at high
magnetic fields have been considered in the works [3,4] taking
into account only nearest-neighbor transitions. For the bilayer
with small asymmetry there are four weakly split two-fold
degenerate levels near zero energy. The valley and orbital degen-
eracies are lifted, but the electron–hole symmetry is preserved.
The near-zero-levels are strongly influenced by Coulomb elec-
tron–electron interaction.

The charge-density excitations at small momenta were con-
sidered theoretically within the Hartree–Fock approximation for
monolayer graphene [5,6] and for bilayer [7]. In the works [8,9]
electromagnetic response in graphene was calculated numerically
in the RPA approximation for wide range of excitation momenta.
In the works [10,11] intra-Landau level transitions were consid-
ered. The many-body corrections obtained within the renormali-
zation method, including weak electron–hole asymmetry, and the
attempts to explain sharp transition from square to linear

dispersion regime were reported in Refs. [12–14]. In the works
[5–7] Coulomb interaction was shown to conserve electron–hole
symmetry for excitations.

In the present paper the inter-Landau-level transitions in the
bilayer graphene in high perpendicular magnetic field at the
filling-factor n¼ 0 are studied. The novelty of this work is that
the electron–hole asymmetry and Coulomb interaction are
included into consideration simultaneously. Special attention is
given to the difference in the cyclotron transition energies for two
valleys under different conditions. At lower magnetic fields the
energy splitting is due to electron–hole one-particle asymmetry
while at higher magnetic fields the energy splitting in the
spectrum is due to Coulomb interaction.

The bilayer is modelled as two coupled hexagonal lattices with
inequivalent sites (A1, B1) and (A2, B2) in the first and second
graphene layers, arranged according to Bernal (A2–B1) stacking.
In the tight-binding model the energy states of electrons in (A1–
B2) dimer in the vicinity of zero-energy point are conveniently
described by an effective two-component Hamiltonian [2–4]. The
asymmetry between on-site energies in the two layers U arising
from the influence of external gates or a doping effect, the next-
nearest-neighbor transitions and the difference between on-site
energies of dimer and non-dimer sites ~D are taken into account:
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where p¼ ‘kxþ i‘ky, pþ ¼ ‘kx�i‘ky are the complex momen-
tum operators, k is the wave vector measured from the center of
the valley, x is the valley index, x¼ 1 in the valley K, x¼�1 in the
valley K 0, g0 is the intra-layer A-B coupling parameter, g1 is the
inter-layer A2-B1 coupling parameter, m¼ g1=2v2 is the effective
mass for bilayer graphene, v¼

ffiffi
3
p

2‘ ag0, a is the lattice constant.
The parameter g4 describes the next-nearest-neighbor transi-

tions (A1–A2 and B1–B2 interlayer hopping), g1 ¼ 0:1g0, g4 ¼

0:05g0.
H0 is the basic term yielding a parabolic spectrum with the

effective mass m. H1 describes the layer asymmetry, leading to the
opening of a gap �U in the spectrum. H2 is due to the next-
nearest-neighbor transitions and the difference between on-site
energies of dimer and non-dimer sites and is responsible for the
electron–hole asymmetry in the spectrum around zero-energy
point. The second term in H2 results in the shift of the single-
energy spectrum as a whole an will be omitted later. The two-
component Hamiltonian is applicable if the considered electron
energy 9e9 is within the energy range of 9e9o 1

4 g1. The weak
asymmetry means that U=g151, D=g151, g4=g051.

In the perpendicular magnetic field B the energy spectrum of
Landau levels Enx (n¼0,1,7N, N¼0,1,2,y) and corresponding
two-component wave functions Cnk are found from the Hamilto-
nian H using the Landau gauge A¼ ð0,BxÞ , as in the work [4]. The
magnetic length is lB ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
‘ =eB

p
, the cyclotron frequency is

oc ¼ eB=m. The basis consisting of the wave functions describing
the states in the ordinary two-dimensional electron gas
fNk ¼ eikyfNkðxÞ is used, where k is the parameter which labels
degenerate states within one Landau level in Landau gauge:
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where d¼U‘oc=g1. C0k ¼ ðf0k,0Þ,C1k ¼ ðf1k,0Þ, Cnk ¼ anfNkþ

bnfN�2,k. The coefficients an and bn are the eigenvector compo-
nents. Without any asymmetry in the zero approximation:
a7N ¼ 1=
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2
p

,b7N ¼ 71=
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2
p

.
Note that the spectrum of high-energy LLs is applicable for the

fields and levels satisfying the condition ‘oc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN�1Þ

p
og1=4. For

g1 ¼ 0:39 eV this inequality yields Bo50 T for N¼2. For higher
fields or higher levels the full four-band Hamiltonian has to be
used to determine the exact LL spectrum. The Zeeman splitting is
omitted. Although in graphite the electron g-factor is not small
(g¼2), a very light effective mass m� 0:054 in the bilayer
determines a small ratio between the Zeeman energy and LL
splitting eZ=‘oc � 0:05 [4]. Trigonal warping coming from
g3 ¼ gA1�B25g1 is not included.

The Hamiltonian of the many-body system in the perpendi-
cular magnetic field with the Coulomb interaction is

Ĥ ¼
X

EnxaþlxsalxsþHint ð6Þ

where aþlxs and alxs are the one-particle creation and annihilation
operators; l¼ ðn,kÞ, n¼0, 1,7N indicates the Landau level; x and
s are valley and spin indexes:

Hint ¼
1

2

X
Vl1;l2
l3,l4aþl4xsaþl3x0s0al2x0s0al1xs ð7Þ

The Coulomb interaction conserves spin and valley indexes. The
matrix elements for Coulomb interaction are found using the two-
component wave functions, as in Ref. [5] for monolayer graphene.

In this work only the charge-density-excitations are studied,
valley and spin indexes ðx,sÞ are not changed. Corresponding
operators for excitations (n,n0) from the level n to the level n0 with
the momentum K are

Q þn,n0;xsðKÞ ¼
X

k

aþl0xsalxs ð8Þ

where l¼ ðn,kÞ, l0 ¼ ðn0,kþKÞ. The magnetic field is high which
means that Ec 5‘oc , Ec is the typical Coulomb energy: Ec ¼ e2=elB.
The momentum of excitation is small: KlB51. The problem is
considered in the way analogous to that employed in Refs. [5,6]
for monolayer graphene systems. The time-dependent Hartree–
Fock approximation is used. The Hartree–Fock approach assumes
that there is a small parameter Ec=DEnn0 ðxÞ51, where DEnn0 ðxÞ is
the transition energy without interaction DEnn0 ðxÞ ¼ En0 ðxÞ�EnðxÞ.
For bilayer graphene Ec ¼ 10

ffiffiffi
B
p

, ‘oc ¼ 2:2B [3] and the ratio
‘oc=Ec ¼ 0:22B1=2 for E¼ 5. For the first high-energy transition
E12C

ffiffiffi
2
p

‘oc , and therefore for B¼40 T the ratio E12=Ec C2. We
do not consider with this method the low-energy transitions
between Landau levels 0 and 1 with energies close to zero.

The excitation energy ~En,n0 ;xs consists of noninteracting and
Coulomb parts:

~En,n0;xs ¼DEnn0 ðxÞþEex
n,n0 þSn0xs�Snxs ð9Þ

Coulomb part is represented by the terms: ‘‘excitonic’’ Eex
nn0 part

due to direct interaction of the electron at the level n0 and the hole
at the level n and exchange self-energy Snxs and Sn0xs corrections
to the one-electron Landau level energies. The ‘‘depolarization’’
shift which is given in the random phase approximation (RPA)
proportional to K is omitted. The restriction for KC0 enables to
consider excitations with different ðx,sÞ independently. As for
monolayer graphene, there is the problem of divergency of
exchange self-energy Sn due to summation over all filled LLs.

The interlayer electron transitions from the top filled to the
next free Landau levels with energies nearly oc are studied; the
selection rules are DN¼ 1. The case of filling-factor n¼ 0 is
considered, it means the absence of free carriers or the equal
amount of holes and electrons. Different possible ground states in
magnetic field and different cyclotron transitions may correspond
to this filling.

1. The asymmetric bilayer without e–h asymmetry

Let U40: In this case we have filling-factor n¼ 4 for the
electrons in one valley and n¼ 4 for the holes in another valley.
For the valley with x¼ 1 there is the top filled LL with n¼�2 and
the transition (�2,1), and for the valley with x¼�1 there are the
top filled 0 and 1 LLs and the transition (1,2). Including spin there
are two transitions of each type. The noninteracting part is the
same for both types of transitions:

DE�2;1ð1Þ ¼DE1;2ð�1Þ ¼oc
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Note that the electron–hole symmetry of one-particle Hamilto-
nian leads to the fact that (�2,1) and (1,2) transitions are really
the same and have the same energy. (�2,1) in electron repre-
sentation is (1,2) in hole representation. Taking into account spin
degeneracy we have four transitions with equal energies. The
small asymmetry is important only for filling of LLs and the wave
functions may be used without asymmetry. For n¼ 0 integer
filling the value of self-energy may depend on resolving
the divergency problem, but it is not zero. There is no Kohn’s
theorem [15].

For the excitations in the different valleys energy splitting due
to the layer asymmetry is absent.
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