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a b s t r a c t

Electronic band structures in solids sometimes have features similar to Dirac electrons in vacuum.

Well-known examples are bismuth and graphite; 4�4 original Dirac matrix in three dimension (3d) in

the former with strong spin–orbit interaction, while 2�2 massless Dirac in two dimension (2d) with

weak inter-layer coupling described essentially by Weyl equation in the latter. Recently one layer of

graphite, graphene, is realized and studied both extensively and intensively. Other recent examples

include a molecular solid, a-ðBEDT-TTFÞ2I3, which has a layered structure with electronic states

described by tilted-Weyl equation, and Fe-pnictides. There is also a theoretical proposal that one of

inverse perovskites, Ca3PbO, can be a candidate in 3d with strong spin–orbit interaction similar to

bismuth. The particular feature of Dirac electrons in solids is a small, or even vanishing, band gap and

then thermodynamic or transport properties are affected by inter-band coupling of electronic states.

Typical ones are responses to external magnetic field. Actually, it has long been known that orbital

susceptibility of these Dirac electrons has very particular features resulting from inter-band effects of

magnetic field. It is of interest to see such inter-band effects on Hall effects to be compared with orbital

susceptibility, which will be introduced in this paper, together with possible consequences of mutual

interaction between valleys triggered by tilting in molecular solids.

& 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Relativistic quantum theory of electrons by Dirac leads to the
well-known energy spectrum with respect to wave-number, k,

EðkÞ ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

0þc2k2
q

, ð1aÞ

E0 ¼mc2: ð1bÞ

Here ‘ ¼ 1, k¼ 9k9, and m and c are electron rest mass and the
velocity of light, respectively. In Eq. (1a), þ refers to electrons
while � to positrons. Electronic states having EðkÞ are doubly
degenerate because of spins as is deduced from the Dirac
equation represented by 4�4 matrix. For wave vector satisfying
ðckÞ2bE2

0, EðkÞ � 7ck. In the special case of vanishing rest mass,
m¼0, EðkÞ ¼ 7ck for any k, which is described by 2�2 Weyl
equation and expected to apply to neutrinos except possible small
masses. The k-linear dependences of EðkÞ are particular features of
Dirac electrons. In solids, the motion of electrons are represented
by the band structures with wave number defined within the
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Brillouin zones. There are cases where the band structure happens
to have similar features to Eq. (1) for some region of k-space. If
these regions of k of some particular bands are located near the
Fermi energy, characteristics of Dirac electrons are reflected in the
properties of macroscopic solids. Examples include bismuth [1–3]
and graphite [4,5], whose fascinating electronic properties have
been studied about half a century ago. The essence of electronic
states of the former is the same as that of Dirac electrons, whereas
in the latter the Weyl equation. Recently there is growing interest in
such Dirac electrons including graphene [6], a single layer of
graphite, and some kinds of molecular solids [7]. Moreover there
have been indications of existence of Dirac electrons for FePn
superconductors [8–11] and inverse perovskite such as Ca3PbO [12].

In this paper, origin of such Dirac electrons is discussed on
general grounds, and results of recent studies on Bi and molecular
solids are introduced.

2. Origin of Dirac electrons in solids

In solids, as is well known, electronic motions are under the
influence of periodic potential and the energy eigenvalues and
eigenfunctions are given by the energy bands, enðkÞ and Bloch
functions CnkðrÞ ¼ eik�runkðrÞ, where unkðrÞ is a periodic function
with respect to lattice and depends on both band index, n, and
wave vector, k. It is to be noted that the k-dependences of unkðrÞ is
very complicated in general and then very hard to determine
explicitly. This fact indicates that the detailed understanding of
the electronic states, especially scattering processes between
electrons and by impurities, and responses to external field, is
very difficult if based on the Bloch representation. This fact has
been taken seriously in 1950s because of the strong need to
understand semiconductors. The difficulty has been overcome by
Luttinger and Kohn [13] by their discovery of a particular
representation of electronic states, now called LK representation,
which is orthonormal and complete. In this representation, the
basis functions are wnkðrÞ ¼ eik�runk0

ðrÞ, where the wave vector of
the periodic function is fixed to a particular value, k0, which is in
principle taken anywhere in the Brillouin zone but in practice at a
particular point corresponding to the band gap. The merit of this
LK representation lies in the fact that the k-dependence is only in
the phase factor eik�r same as in free electrons and then the
changes of the wave vector of electrons in the scattering pro-
cesses are easily described. As compensation to this great advan-
tage, the Hamiltonian is no longer diagonal in LK representation
in contrast to Bloch representation and become a matrix with
respect the band indices. This Hamiltonian matrix has a following
form in general

Hnn0 ¼ ½enðk0Þþk2=2m�dn,n0 þkapann0=m, ð2Þ

where k is measured relative to k0. The off-diagonal components
of the Hamiltonian matrix, pann0 , in Eq. (2) are all well-defined and
called kp Hamiltonian. This is exact and not an approximation.
The ‘‘kp perturbation’’ results once the off-diagonal terms are
treated perturbatively to diagonalize the Hamiltonian leading to
effective masses and g-factors of conduction and valence bands,
respectively. Through these procedures very detailed understand-
ing of electronic states of semiconductors has become possible,
which can be considered to be the scientific foundation of present
semiconductor technology. This procedures will be explicitly seen
by considering the following simple two bands separated by the
band gap Eg at k0, assumed to be at symmetry point,

H¼
Eg=2þk2=2m ðkxpxþ ikypyÞ=m

ðkxpx�ikypyÞ=m �Eg=2þk2=2m

0
@

1
A: ð3Þ

The eigenvalues of this Hamiltonian are given as E7 ¼

k2=2m7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEg=2Þ2þðkp=mÞ2

q
with ðkpÞ2 � ðkxpxÞ

2
þðkypyÞ

2. For

wave vector satisfying ðEg=2Þ2bðkp=mÞ2, these eigenvalues are

approximated as E7 ¼ Eg=2þk2=2mn
7 with the effective mass

given by 1=2mn
7 ¼ 1=2m7p2=m2EG. This is called effective mass

approximation. On the other hand for ðEg=2Þ25 ðkp=mÞ2,

E7 � 79kp9=m similar to Dirac electrons. This implies that, if

the two bands separated by a small (or vanishing) band gap
happen to be near the Fermi energy, solids will reflect interesting
characteristics of Dirac electrons. In such cases the inter-band
matrix elements represented by p in Eqs. (2) and (3) in the
Hamiltonian can result in important consequences in various
electronic responses, both in thermodynamic and transport
properties.

3. Dirac electrons under magnetic field and susceptibility

Inter-band effects of magnetic field have been seriously taken
in 1950s and 1960s, especially in the context of responses of
Bloch electrons to external magnetic field, in particular weak field
orbital susceptibility [14–17]. This is because the large diamag-
netism of bismuth experimentally first observed in early 1930’s
[18] remained the mystery. The difficulty of the single band
approach to the orbital susceptibility was clear. This is because
the Landau–Peierls formula based on the single band approxima-
tion is given as [19]

wLP ¼
e2

48p3c2

X
n

Z
dk
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x
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, ð4Þ

where f ðeÞ is the Fermi distribution function and en is the energy
of the n-th band. It predicts vanishing contribution at absolute
zero when the Fermi energy is tuned (by alloying with Sb) to be
located in the band gap because of the factor @f ðenÞ=@en in Eq. (4).
On the other hand, experimentally, the magnetic susceptibility,
which is negative, i.e. diamagnetic, takes large absolute value in
this situation [20]. This fact has stimulated many theoretical
studies on orbital susceptibility. However, the resultant formulas
in one form or another turn out to be very complicated and it was
not easy to extract physical implications therefrom. The mystery
of bismuth was finally resolved theoretically based on the
detailed calculations for the effective model for bismuth by taking
inter-band effects of magnetic field into account first with help of
the Wigner representation [21]. The effective model focuses on
two bands separated by small band gap with full consideration of
strong spin–orbit interaction. Such a model had been proposed by
Cohen and Blount [1] and later put into an elegant form by Wolff
[2] essentially same as the 4�4 Dirac equation but with apparent
complication resulting from spatial anisotropy intrinsic to solids.
The fact that the essence of anomalously large diamagnetism is in
the 4�4 Dirac electrons is seen by considering the electronic
energy spectrum in uniform magnetic field whose effects are
correctly taken into account by the replacement of k to kþeA=c,
with �e and A being the electronic charge and the vector
potential, respectively, in the LK representation. The results are
given as follows for the simplified model ignoring the anisotropy
(this may be called isotropic Wolff model, which is similar to
Dirac equations in vacuum, but for solids here with cut-off in
large momentum in view of the limited region in Brillouin zone
for the validity of the effective model),

En,sðkÞ ¼
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