Physica B 406 (2011) 1276-1282

journal homepage: www.elsevier.com/locate/physb i

Contents lists available at ScienceDirect

Physica B

-!ﬁ;r;i:;-

Five-parameter equation of solids considering thermal effect which correctly

incorporates cohesive energy

Zhang Da?, Sun Jiuxun **, Zhao YinmeiP

2 Department of Applied Physics, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, People’s Republic of China

P Nanjing Agricultural University, Nanjing 210095, People’s Republic of China

ARTICLE INFO ABSTRACT

Article history:

Received 25 July 2010

Received in revised form

10 December 2010

Accepted 10 January 2011
Available online 19 January 2011

Keywords:

Equation of state

Cohesive energy

Einstein modal
Thermodynamic properties

A five-parameter equation of state (EOS) is proposed, which correctly incorporates the cohesive energy
data without physically incorrect oscillations in both extreme high pressure and expansion regions.
Based on a modified Einstein model, the thermal effect is included in the proposed EOS complying with
the zero-pressure condition. With this thermal EOS applied to five solids (Ar, Al, Au, Cu and Li), some
important thermodynamic properties as isotherm, isochore, thermal expansion coefficient, volume
modulus, heat capacity and Hugoniot are calculated for each selected solid with good agreement with
experimental data, which confirms the validity of the present work
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1. Introduction

Characterized by describing relationships among thermody-
namic variables of compressed solids, the equation of state (EOS)
plays an important role in scientific research and engineering
application. Nowadays, the embedded atom model (EAM) has
become the most successful potential model for metallic solids,
and the EOS takes significant part in the construction of
EAM [1-4]. So far, a lot of forms of EOSs have been proposed
with varying extent of success, such as the mixed power-
exponential-type (MPE) [1,2], Murnaghan EOS, Birch EOS [1,2],
Rose et al. [5], Vinet et al. [6] (in fact should be the effective
Rydberg, or ER EOS as pointed out by Qin et al. [1,2]), Baonza
et al’s [7] equations, etc. However, a fundamental problem with
these EOSs is that the pressure derivative of the isothermal bulk
modulus deduced from them varies much and even deviates
much from the experimental data [8,9]. Both of the modified ER
(MER) EOS proposed by Sun et al. [10] and the generalized Rose
(GRS) EOS proposed by Li et al. [8,9] solve this problem well. The
GRS EOS is expressed as

Ec = Eo[—14+n(1-X)+ 01> (1-X)*lexp[n(1-X)] 1

P. =3BoX2(1-X)(1-35nX + 5 n°X?)exp[n(1—-X)] )
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here, X=(V/Vy)'.  and & are the dimensionless reduced para-
meters defined as

n=1/9BoVo/Eo, &=—1/3+B~1)/2n) 3)
where Vy and E, are the molar volume and the cohesion energy
(in positive value) at the ambient pressure, respectively. By and
By are the isothermal bulk modulus and its first pressure
derivative at the ambient pressure, respectively. Eq. (2) will
reduce to the Rose or ER EOS as long as ¢ takes the fixed value
0.05 or 0, respectively [8,9].

In addition, the recent works of Qin et al. [1,2] and our calculations
exhibit that most of these EOSs have some other disadvantages
concerning cohesive energy E. Firstly, the theoretical cohesive energy
values deduced from some of these EOSs deviate from the experi-
mental records a lot. For instance, the values of Ey in k] mol~! for Au
calculated by MPE, Morse [1,2], ER [1,2,6] and MER [10] equations are
436.32, 475.19, 821.69 and 427.43, respectively, all of which fairly
deviate from the experimental data 367.6 [8,9]. Secondly, the others
even cannot represent physically reasonable cohesive energy. Take Al
for an example, the theoretical values of its cohesive energy derived
from the AP3 and Holzapfel are — 127.04 and 85.181, receptively, [10]
which obviously are physically incorrect. Futhermore, the deviations
between the experimental data and the computed results coming of
Birch and Rose EOSs are also fairly large as shown in Ref. [10]. For the
GRS EOS considering binding energy E, as one of its parameters,
however, these disadvantages are conquered perfectly because Ej
itself is set as the experimental value.

Of the EOSs mentioned above, the GRS EOS proposed by
Li et al. seems to be unique one, which not only deduces accurate
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Fig. 1. Comparison of variation of the cold pressure and energy versus the compression ratio for Ca and Mg between the GRS (using the parameters cited in Refs. [8,9]) and
the present GEF equations. Please note that the oscillations of the GRS EOS in the region V/Vp < 0.4 are physically incorrect.

B§ but also incorporates the cohesive energy correctly for solids.
Nevertheless, an obvious deficiency of the GRS EOS indicated by
our calculation is that the unphysical oscillations exist in the
potential function Eq. (1) and corresponding EOS Eq. (2) in both
extreme high pressure and expansion regions, which would bring
on amount of adverse effects in the researches, especially for
those relied on the EAM [1-4]. Actually, Qin et al. [1,2] have
pointed out that such physically incorrect oscillation exists in the
four-parameter Birch EOS at high-pressure regions for some
solids, but they neglected the same problem with the GRS EOS.
The reason of these oscillations is that the polynomial factor of
Eq. (1) 1-36nX+6n?X? has multiple zero roots. E.g. for Au,
0= —0.004 and #=6.725 [8,9], which result in two corresponding
zero roots X=3.5747 and X=—1.1386 of which the former is
physically incorrect in the expansion region, and the latter,
though out of the deformation region, probably brings on devia-
tions from the experimental observation of Au at an extremely
high pressure. In Fig. 1, Ca and Mg are taken for other two
examples to illustrate this physically incorrect oscillation induced
from the GRS EOS.

The discussion above suggests us that further development of
the EOS in a simple form which incorporates correct cohesive
energy without unphysical oscillations is of great necessity, which
is also a main task in the work.

2. Definition of the five-parameter equation of state

We write out the analytical form of the proposed EOS directly to
illuminate its physical meaning. For convenience, we nominate our

potential equation as generalized exponential function (GEF) EOS. The
proposed potential and corresponding EOS are expressed as

E
Ec(V)= > {nfexplo(1-X)]-nf—o exp[(1-X")] @)

nﬁEo

PeV)= 3aVoX3

{(@X+npXMexplo(1-X)|—(o+nB)X" texp[f(1-X")]

(5)

which are parameterized by five parameters Vy, Eo, o, f and n. Of
these parameters the meanings of V, and E; are the same as in Eq. (1),
o mainly controls the property of repulsion part of cohesive energy
and behavior of solids at high pressure region, and the other two
coefficients, 5 and n, mainly control the property of attractive part
and the behavior at low pressure and expansion regions. It can be
seen that Eq. (4) reduces to the Morse potential, and Eq. (5) reduces to
the Morse EOS as long as «=f§ and n=1. It should be emphasized, as
in the GRS EOS, that the parameter E, in Eq. (4) quoted from
experimental data guarantees that the GEF EOS can yields correct
cohesive energy. Based on the relationships B= —(1/3)X(oP/oX) and
B=(1/9B)X%(#*P/0X?), the bulk modulus and its derivative with
respect to zero pressure can be analytically expressed as follows:

By = ngﬁ‘zo(oc+nﬁ+n—1) (6)
Bo=1+(Q/3) o +nf+n—1)" @

in which Q=(a+nf)(a+2nf)—(n—1)n-2).
In Eq. (4), it is apparent that the repulsive part nfexp[c(1—X)
+ f(1-X™)] is a monotonously decreasing function of X and that the
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