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a b s t r a c t

The mixed spin-(1/2, 1) Ising chain with axial and rhombic zero-field splitting parameters in the

presence of the longitudinal magnetic field is exactly solved within the framework of decoration-

iteration transformation and transfer-matrix method. Our particular emphasis is laid on an investiga-

tion of the influence of the rhombic term, which is responsible for an onset of quantum entanglement

between two magnetic states Sk
z
¼71 of the spin-1 atoms. It is shown that the rhombic term gradually

destroys a classical ferrimagnetic order in the ground state and simultaneously causes diversity in

magnetization curves including intermediate plateau regions, regions with a continuous change in the

magnetization as well as several unusual field-induced transitions accompanied with magnetization

jumps. Another interesting findings concern with an appearance of the round minimum in the

temperature dependence of susceptibility times temperature data, the double-peak zero-field specific

heat curves and the enhanced magnetocaloric effect. The temperature dependence of the specific heat

with three separate maxima may also be detected when driving the system through the axial and

rhombic zero-field splitting parameters close enough to a phase boundary between the ferrimagnetic

and disordered states and applying sufficiently small longitudinal magnetic field.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Over the last few decades, exactly solved one-dimensional
quantum spin models [1–3] have attracted considerable research
interest as they may describe subtle quantum phenomena to
emerge in real magnetic materials without a danger of over-
interpretation, which is inherent to any approximative treatment.
The present work is devoted to an exact study of the mixed spin-
(1/2, 1) Ising chain model, which accounts both for the axial zero-
field splitting (AZFS) as well as the rhombic zero-field splitting
(RZFS) parameter in the presence of the applied longitudinal
magnetic field. It is worthy of notice that the special limiting
case of this model system in the absence of the external magnetic
field has been proposed and exactly solved by Wu et al. [4–6]
using the rigorous procedure based on the Jordan–Wigner trans-
formation [7] (see Refs. [8–10] for related works on this subject).
However, it has been recently shown by the present authors [11]
that the exact results obtained by Wu et al. [4,5] can also
be recovered by another independent way by making use of

the transfer-matrix method. The foremost advantage of the
formulation based on the transfer-matrix method lies in the fact
that this rigorous method may be even applied in the presence of
the non-zero longitudinal magnetic field. The main purpose of
this work is therefore to investigate the effect of longitudinal field
on magnetic properties of the mixed spin-(1/2, 1) Ising chain with
both AZFS and RZFS parameters.

Before proceeding to an exact calculation for the investigated
model system, let us briefly comment on an experimental
motivation of our study. It is noteworthy that there exist several
heterometallic molecular-based compounds with a magnetic
structure, which can be properly described as one-dimensional
chain of alternating spin-1/2 and spin-1 metal ions. Among the most
common examples of the one-dimensional mixed spin-(1/2, 1)
chains one could mention

� CuNi(EDTA) �6H2O [12],
� CuNi(pbaOH)(H2O)3 �nH2O [13],
� CuNi(pba)(D2O)3 �2D2O [14],
� PPh4[Ni(pn)2][Fe(CN)6] �H2O [15],
� {Pr(bet)2(H2O)3Fe(CN)6} [16],
� {Ru(acac)2(CN)2}{Ni(dmphen)(NO3)} [17].

Even though the vast majority of aforementioned polymeric
compounds should be preferentially regarded as experimental
representatives of the mixed-spin quantum Heisenberg chain
rather than the mixed-spin Ising chain, it is the authors’ hope
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Physica B 406 (2011) 2967–2976

www.elsevier.com/locate/physb
dx.doi.org/10.1016/j.physb.2011.04.040
mailto:jozef.strecka@upjs.sk
mailto:http://158.197.33.91/~strecka.3d
dx.doi.org/10.1016/j.physb.2011.04.040


that our exact analytical results for the mixed spin-(1/2, 1) Ising
chain may provide a deeper insight into several important
vestiges of real physical behavior and explain some experimental
results at least at a qualitative level. Besides, one should also
expect that the theoretical description based on the mixed spin-
(1/2, 1) Ising chain may be quite appropriate for those hetero-
metallic coordination polymers, where at least one from both
constituent magnetic ions possesses a rather high magnetic
anisotropy. It should be stressed that the magnetic behavior of
this type has been recently found in two heterometallic com-
plexes containing highly anisotropic rare-earth ions [18–20].

The outline of the present paper is as follows. In the following
Section 2, we will shed light on the basic steps of our exact
calculation for the investigated model system. Section 3 deals
with the discussion of the most interesting results obtained for
the phase diagrams and basic thermodynamic quantities. Finally,
some concluding remarks are given in the Section 4.

2. Exact solution of the mixed-spin Ising chain

Let us consider the mixed spin-(1/2, 1) Ising chain with AZFS
and RZFS parameters in the presence of the longitudinal external
magnetic field. Suppose that the linear chain consists of the
alternating spin-1/2 and spin-1 atoms, whereas the former spin-
1/2 atoms constitute the sublattice A and the latter spin-1 atoms
form the sublattice B. The total Hamiltonian of the system can be
written as a sum of three parts

Ĥ ¼ ĤexþĤ
ð1Þ

zfsþĤzee, ð1Þ

which account for the nearest-neighbor Ising interaction, AZFS
and RZFS terms acting on the spin-1 atoms and the magnetostatic
(Zeeman’s) energy of the spin-1/2 and spin-1 atoms in the applied
longitudinal magnetic field
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z
kþ ŝ
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Above, ŝz
k and Ŝ

a
k ða¼ x,y,zÞ denote standard spatial components of

the spin-1/2 and spin-1 operators, respectively, N denotes a total
number of spins from each sublattice and the periodic boundary
condition sNþ1 � s1 is imposed for simplicity. The parameter J

stands for the Ising interaction between nearest-neighboring
spin-1/2 and spin-1 atoms, whereas the terms D and E label the
AZFS and RZFS parameters acting on the spin-1 atoms only. Last,
two Zeeman’s terms HA and HB describe the influence of long-
itudinal magnetic field on the spin-1/2 and spin-1 atoms from the
sublattices A and B, respectively.

Before proceeding further, it is worthwhile to remark that
there exist several equivalent representations of the zero-field
splitting Hamiltonian Ĥð1Þzfs given by Eq. (3). As a matter of fact, one
may for instance prove one-to-one correspondence between Ĥð1Þzfs

and the effective spin Hamiltonian with three different single-ion
anisotropy parameters Dx, Dy and Dz
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The Hamiltonians Ĥð1Þzfs and Ĥð2Þzfs differ from one another just
by unimportant constant term, because the mapping rela-

tions D¼Dz�ðDxþDyÞ=2 and E¼ ðDx�DyÞ=2 establish a precise
equivalence between the Hamiltonians (3) and (5) (see Ref. [11]
for more details). It should also be noticed that the particular case
of the Hamiltonian Ĥð2Þzfs with Dy

¼0 has been considered by Wu
et al. [4] in their recent work. However, it has been shown in our
preliminary report [11] that the Hamiltonian Ĥð1Þzfs with one less
free parameter is much more appropriate for the interpretation of
obtained exact results compared with the Hamiltonian Ĥð2Þzfs and
thus, this more convenient definition of the zero-field-splitting
Hamiltonian will be used throughout the rest of this paper.

Now, let us turn our attention to the main points of the
method, which enables an exact treatment of the investigated
quantum spin chain. First, the total Hamiltonian (1) can be
rewritten as the sum of Zeeman’s term for all spin-1/2 atoms
from the sublattice A and the sum of site Hamiltonians
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whereas each site Hamiltonian Ĥk involves all the interaction
terms including the kth spin-1 atom from the sublattice B
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with Ek ¼ Jðŝz
kþŝ

z
kþ1ÞþHB. Because the Hamiltonians (7) at dif-

ferent sites commute, i.e. ½Ĥ i,Ĥj� ¼ 0 is valid for each ia j, the
partition function can be partially factorized and consequently
rewritten in the form
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where b¼ 1=ðkBTÞ, kB is Boltzmann’s constant, T is the absolute
temperature, TrSk

means a trace over degrees of freedom of the
kth spin-1 atom from the sublattice B and the symbol

P
fskg

denotes a summation over all possible configurations of the spin-
1/2 atoms from the sublattice A. The crucial step of our exact
procedure represents calculation of the expression TrSk

exp
ð�bĤkÞ. For this purpose, it is useful to rewrite the site Hamilto-
nian (7) into the usual matrix representation

/kijĤkjkjS¼
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using the standard basis of ket vectors jkjS¼ j71S,j0S (j¼1�3)
corresponding to the three possible spin states Sz

k ¼ 71,0 of the
kth spin-1 atom from the sublattice B. The straightforward
diagonalization of the site Hamiltonian yields the following
eigenenergies and eigenvectors:
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with the mixing angle jk defined through the relation
jk ¼ arctanðE=EkÞ. It is worth mentioning that the eigenenergies
listed in the set of Eq. (10) can readily be used for calculating the
expression TrSk

expð�bĤkÞ and moreover, the analytical form of
the site partition function Zk then immediately implies a possi-
bility of performing the generalized decoration-iteration trans-
formation [21–24]
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bHA

2
ðsz

kþs
z
kþ1Þ

� �
1þ2expðbDÞcosh b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

kþE2
q� �� �
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