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a b s t r a c t

In this work, we study elastic and thermodynamic properties of VH2 at different pressures and

temperatures. Elastic constants and bulk modulus of VH2 decrease with increase in temperature, and

hence increase with pressure. Thermal expansion of the crystal lattice will be suppressed by high

pressure. When the temperature is 1500 K, 15.99 GPa of pressure can completely restrain the volume

expansion caused by temperature. At a given pressure, the lower the temperature, the easier the cell

compression. At low temperatures, Cv is proportional to T3, and Cv tends to the Dulong–Petit limit at

higher temperatures. The Debye temperature increases with pressure, but decreases with temperature. At

low temperature and low pressure, thermal expansion coefficient increases sharply with temperature. At

high temperature and high pressure, the increasing trend slows down.

Crown Copyright & 2010 Published by Elsevier B.V. All rights reserved.

1. Introduction

In recent years, energy is a serious problem and hydrogen
storage materials have also been widely studied. However, pres-
sure to be applied and cost are too high to apply widely. For
example, 70 MPa of high pressure is required while using an
ordinary carbon fibre tank to store hydrogen [1]. New hydrogen
storage materials should be developed for industrial applications.

With the rapid development of science and technology, hydro-
gen storage materials, such as metal hydrides are in large demand
and application [2,3]. Hydrogen density in metal hydrides is higher
than in liquid or solid hydrogen. fcc-VH2 is one of the most
important hydrogen storage materials. VH2 has a high hydrogen
density (�10.5�1022 Hatom/cm3), higher than those of liquid or
solid hydrogen [3]. Furthermore, VH2 has an excellent capacity of
reversible hydrogen storage, quick hydrogen diffusion in hydride
etc. Fabrication and application of VH2 are usually executed at high
temperature and pressure. Structural, elastic, and thermodynamic
properties of VH2 at high temperature and pressure are significant
greatly influencing the application of VH2 in the fields mentioned
above. Prediction of good elastic and thermodynamic properties of
a crystal is the focus of solid-state science and industrial research.
Particularly, these properties at high temperature and pressure are

the most significant in many modern technologies. Unfortunately,
measurement of elastic and thermodynamic properties of metal
hydrides is very difficult, and to our knowledge detailed data on
VH2 at different temperatures and pressures are not available.
Therefore, we need to obtain these data through theoretical
methods.

First-principle is widely used to predict the properties of
hydrogen storage materials [4]. In this work, first-principle and
the quasi-harmonic Debye model are employed to investigate
elastic and thermodynamic properties of VH2 at different pressures
and temperatures. To our knowledge, research on elastic and
thermodynamic properties of VH2 at high temperature and pres-
sure using this method is an instructive attempt in the correspond-
ing aspects.

2. Theoretical method

In this work, we apply the first-principle CASTEP code [5,6]
combined with the quasi-harmonic Debye model [7] to study elastic
and thermodynamic properties at different pressures and tempera-
tures. The ultrasoft pseudopotential plane waves, together with the
PBE generalized gradient approximation (GGA) exchange-correlation
functions, [5,8–10] have been employed. Cut-off energy of the plane
waves of 310.0 eV is used to describe the electron–ion interaction. The
maximum stress component is 0.02 GPa and the force per atom is less
than 0.01 eV. For the Brillouin zone, we use the 10�10�10
Monkhorst–Pack mesh [11], where self-consistent convergence of
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the total energy is at 5�10�6 eV per atom. Pseudoatomic calcula-
tions are performed for H 1s1, V 3s23p63d34s2.

According to Hooke’s law [12], for cubic materials, there are only
three independent elastic constants (C11, C12, and C44). These con-
stants can be obtained from the deformations caused by forces
imposed on the original cell. For small strains, the total energy
E(V,d) is expressed as a Taylor expansion as follows [13]:

EðV ,dÞ ¼ EðV0,0ÞþV0
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where E(V0,0) is the energy of the unstrained system with equilibrium
volume V0, ti is an element of the stress tensor, and xi is a factor
present to take into account the Voigt index [13]. A detailed
description of the calculation method has been reported in
Ref. [14]. In this work, the total energy has been calculated for nine
different deformations: d¼�0.001, �0.00075, �0.0005, �0.00025,
0, 0.00025, 0.0005, 0.00075, and 0.001. They are too small to cause
obvious internal strain effects; as such there may be a minor
overestimation of the elastic constants. Then we can obtain the
elastic constants and the bulk modulus at different pressures and
temperatures.

Hence in order to investigate thermodynamic properties of VH2,
the quasi-harmonic Debye model [15] is applied in this work, the
non-equilibrium Gibbs function Gn(V;P,T) can be written as follows:

G�ðV ; P,TÞ ¼ EðVÞþPVþAvibðx
,
; TÞ ð2Þ

where E(V) is the total crystal energy per unit cell, P is the constant
hydrostatic pressure, y(V) is the Debye temperature, and Avib is the
vibrational Helmholtz free energy, which includes the vibrational
contribution to the internal energy and the �TS constant tem-
perature condition term. Rigorous statistical calculation of Avib is
difficult requiring knowledge of the exact vibrational levels, but it is
customary to introduce the quasi-harmonic approximation [15]

Avibðx
,
; TÞ ¼

Z 1
0
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where gðx
,
; oÞ is the phonon or vibrational density of states. The

term quasi-harmonic, in contrast to the rigid harmonic approx-
imation, implies that the density of states is allowed to vary with
the crystal configuration, thus including anharmonic contributions
to a certain extent.

The phonon spectrum has acoustic and optic branches; the
acoustic branches have larger effects on the thermodynamic proper-
ties and optic branches have smaller effects. Considering the phonon
effect, we apply the Debye model of phonon density of states to
express the vibrational contribution Avib as follows [16–20]:

Avib ¼ nkT
9y
8T
þ3lnð1�e�y=T Þ�D
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where n is the number of atoms per formula unit, D(y/T) represents
the Debye integral and for an isotropic solid, y is expressed as [20]
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where M is the molecular mass per unit cell and Bs is the adiabatic bulk
modulus, which is approximately given by static compressibility [17]:

BsffiBðVÞ ¼ V
d2EðVÞ

dV2
ð6Þ

f(s) is given in Refs. [19,20] and the Poisson s is taken as 0.25 [12].
Therefore, the non-equilibrium Gibbs function Gn as a function of
(V;P,T) can be minimized with respect to volume V:

@G�ðV ; P,TÞ
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By solving Eq. (7), one can obtain the thermal equation-of-state (EOS)
V(P,T). The heat capacity Cv and thermal expansion coefficient a are
given by [21]

Cv ¼ 3nk 4D
y
T
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a¼ gCv

BT V
ð9Þ

where g is the Grüneisen parameter, which is defined as

g¼�d lnyðVÞ
d lnV

ð10Þ

The thermodynamic properties of a solid are greatly dependent on
phonon density. Using the Debye model, the phonon effect is applied
to calculate the total energy of the crystal (E) at different volumes (V).
Through the first-principle, we obtain the total energy of different
crystal volumes of VH2 (E–V curve). E–V data are fitted fixed by the
Murnaghan equation of state [22], we then, obtain the lattice constant
in the ground state and at other pressures.

However, when a first principles method is used, complete
minimization of Gn(V;p,T) is currently infeasible. The first principles
method ground state calculation is conducted at zero pressure and
zero temperature, and the vibrational effect is neglected as it causes
lower total energy, which may result in the specific heat deviating
from that of the Debye model, especially, at intermediate tem-
peratures. The method will be valid only true when the vibrational
effects act as a hydrostatic term, i.e., are isotropic [6]. However,
VH2 is a cubic crystal and it is isotropic. Then the Debye model and
first principles can be used to predict the thermodynamic proper-
ties of VH2.

Using the methods mentioned above, we calculate the elastic
and thermodynamic properties of VH2. In our work, the elastic and
thermodynamic properties of VH2 are determined from 0 to 1500 K
and 0 to 80 GPa, where the first-principle and quasi-harmonic
model remain fully valid.

3. Results and discussion

The equilibrium lattice constant a0 at T¼0 K and P¼0 GPa is
obtained and is listed in Table 1. The lattice constant a0 is 4.249 Å,
which agrees well with the experimental value (a¼4.270 Å) [23].
At the same time, the calculated bulk modulus B0 and the elastic
constants Cij of the ground state are listed in Table 1. Other
experimental and theoretical values [23–25] are also shown in
Table 1.

Fig. 1(a) and (b) shows the elastic constants Cij and bulk modulus B

at different pressures and temperatures. For fcc-VH2, there are only
three independent elastic constants: C11, C12, and C44. The three
constants, determined by the relationship between deformations and

Table 1
Lattice constant a0, bulk modulus B0, and the elastic constants parameters of VH2 at

zero pressure and zero temperature.

Present work Experiment Other theoretical works

a (Å) 4.249 4.270a, 4.271d, 4.10a, 4.279b,

B0 (GPa) 150.589 – 190.8a, 200.4c,

C11 (GPa) 264.980 – –

C12 (GPa) 93.393 – –

C44 (GPa) 95.317 – –

a Ref. [18].
b Ref. [19].
c Ref. [20].
d Ref. [21].
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