

Contents lists available at ScienceDirect

Physica B

Theoretical and comparative investigations of Yb^{3+} ion in MWO_4 and $M'MoO_4$ scheelites crystals (M=Sr, Pb, Ca, Ba) and (M'=Sr, Pb, Ca, Cd)

I. Trabelsi*, M. Dammak, R. Maâlej, M. Kamoun

Laboratoire de Physique Appliquée, Groupe de Physique Théorique, Département de Physique, Faculté des Sciences de Sfax, Université de Sfax, 3018 Sfax, Tunisia

ARTICLE INFO

Article history:
Received 21 September 2010
Received in revised form
5 October 2010
Accepted 6 October 2010

Keywords: Crystal-field Scheelites Ytterbium

ABSTRACT

The crystal-field model is applied to a series of scheelites crystals (CaWO₄, SrWO₄, PbWO₄, BaWO₄, CdMoO₄, CaMoO₄, SrMoO₄ and PbMoO₄) doped with the Yb³⁺ ion. The calculated crystal-field parameters present a general trend of variation with M^{2+} ionic radius of the host cation. The maximum splitting ΔE of the $^2F_{7/2}$ manifold of the Yb³⁺ ion is then obtained as a function of N_V crystal-field strength parameters. The agreement between experimental results and theoretical predictions for all investigated systems is very satisfactory. The crystal-field effects are very important for the prediction of emission energies of the Yb³⁺ ion in different scheelites.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Over the last decade there has been increasing interest in the research of Yb³⁺ activated laser crystals [1]. The Yb³⁺ ion in a laser host crystal is the simplest example of electronic levels in an impurity-doped solid, since the Yb3+ ion possesses only two electronic states: the ²F_{7/2} ground state and the ²F_{5/2} excited state. The two energy levels are split under the crystal-field, which means that all Yb lasers are quasi-three-level systems. The Yb-doped crystals display some advantages over Nd-doped crystals: the Yb3+ doped media generally have longer radiative lifetimes and higher quantum efficiency; the Yb³⁺ ions in the host materials possess no up-conversion effect or excited state absorption in principle, which will greatly reduce thermal effects in the laser crystal: the absorption spectrum shows prominent bands in the range 900-980 nm; the emission spectra of Yb doping materials are broader than those of Nd doping materials, so Yb doping materials may be used to produce pulsed laser or mode-lock lasers. Many kinds of Yb-doped crystals have been reported for efficient Yb laser outputs [2-13]. Scheelites doped with the ytterbium ion have been investigated extensively through paramagnetic resonance, spectroscopy and other techniques, resulting in a large body of data on these systems.

Until now, the most attention has been paid to the scintillation properties of molybdates with a scheelite-type structure: $M'MoO_4$ (M'=Ca, Cd, Sr, Pb); however, all of the crystals studied have a number of drawbacks, i.e., low luminescence intensity, even at low temperatures ($BaMoO_4$); large Z ($PbMoO_4$); or the presence of

radioactive cation isotopes (CdMoO₄, PbMoO₄). Currently, CaMoO₄ crystals are considered as the most appropriate. MWO₄ (M=Sr, Pb, Ba and Ca) with scheelite structure has attracted great interest due to its useful properties, such as electro-optics [14,15], high-pressure phase transformation [16,17] and unique spontaneous Raman behaviors [18–20], which are proven to be important for the stimulated Raman scattering (SRS) technique in Raman laser development [21].

In this work, we are interested in ytterbium doped $CaWO_4$, $PbWO_4$, $SrWO_4$, $BaWO_4$, $CaMoO_4$, $PbMoO_4$, $SrMoO_4$ and $CdMoO_4$ and we estimate a general trend for ytterbium ions in MWO_4 and $M'MoO_4$ scheelites.

2. Calculation

Scheelite-type MWO₄ (or M'MoO₄) has a tetragonal crystal structure of space group I4₁/a (C_{4h}^6). The M^{2+} (or $M^{\prime 2+}$) site has eight nearest-neighbor oxygen ions, which can be grouped into two sets of distorted interpenetrating tetrahedra [18,22–24].

The Yb³+ ion in MWO₄ or M′MoO₄ crystal occupies the M²+ site. Strictly speaking, the M²+ site has S₄ point symmetry. Since this point symmetry is very nearly D₂d, some authors [25,26] applied D₂d symmetry as a good and realistic approximation to study the optical spectra for rare-earth ions in MWO₄ or M′MoO₄ crystals. For simplicity, we apply D₂d symmetry here. In MWO₄:Yb³+ or M′MoO₄:Yb³+, the energy levels and wave functions of the above-mentioned Kramer's doublets can be calculated by diagonalizing a 14×14 energy matrix of the $4f^{13}$ ion in tetragonal (D₂d) symmetry related to the Hamiltonian

$$H = H_{CF}(D_{2d}) + H_{SO}$$
 (1)

^{*} Corresponding author.

E-mail address: trabelsiikram@yahoo.fr (I. Trabelsi).

where H_{SO} is the spin-orbit coupling term and the crystal-field

$$\hat{H}_{CF}(D_{2d}) = B_0^2 \hat{C}_0^2 + B_0^4 \hat{C}_0^4 + B_4^4 (\hat{C}_{-4}^4 + \hat{C}_4^4) + B_0^6 \hat{C}_0^6 + B_4^6 (\hat{C}_{-4}^6 + \hat{C}_4^6) \tag{2}$$

The empirical crystal-field parameters (CFPs) are obtained by a least-square fitting program that minimizes the root mean square (rms) deviation between calculated and experimental energy levels derived from optical spectra. This rms is given by [27]

$$\sigma = \sqrt{\sum_{i} \frac{(E_i^{cal} - E_i^{\exp})^2}{N - P}} \tag{3}$$

where N denotes the number of levels and P is the number of independent free-parameters.

As useful tools to measure the CF interaction strength, mainly in order to establish quantitative comparisons between CaWO₄, PbWO₄, SrWO₄, BaWO₄, CaMoO₄, PbMoO₄, SrMoO₄ and CdMoO₄, the crystal-field strength parameters have also been calculated with the formalism defined by Ref. [28]

$$N_{V} = \left[\sum_{k,q} \frac{4\pi}{2k+1} \left(B_{q}^{k} \right)^{2} \right]^{1/2} \tag{4}$$

3. Results and discussion

3.1. Yb3+ doped in MWO4 and M'MoO4 crystals

Trivalent ytterbium has the simplest energy level structure with only two manifolds, the ${}^2F_{7/2}$ ground state and the ${}^2F_{5/2}$ excited state, which are separated by approximately 10,000 cm⁻¹.

The starting sets of CFPs were taken from Ref. [29] corresponding to the Yb³⁺ ion in MWO₄ (M=Sr, Pb, Ba and Ca) and $M'MoO_4$ (M'=Sr, Pb, Cd and Ca) crystals. The fitting procedure was described in our previous work (Yb³⁺ doped YAB) [30]. In this case, the number of energy levels for Yb³⁺ in different scheelites included in the fits was 7. Table 1 shows the final set of CFPs of ytterbium in CaWO₄, PbWO₄, SrWO₄ and BaWO₄ obtained for the best fit, which was (with quite good rms) about 3.5, 7.9, 9.5 and 17 cm⁻¹, respectively. All obtained parameters are meaningful then compared to the CFPs of Yb3+ in CaWO4 occupying the D2d symmetry site [31]. Table 2 shows the final set of CFPs of ytterbium in CaMoO₄, PbMoO₄, SrMoO₄ and CdMoO₄ obtained for the best fit, which was (with quite good rms) about 7.5, 10.8, 7.3 and 3.7 cm $^{-1}$, respectively. This resulting root square deviation confirms the consistency of the fit. A good agreement is obtained between experimental and calculated energy levels. Table 3 presents a comparison of experimental and calculated ²F_{7/2} and ²F_{5/2} Stark energy levels of the Yb3+ ion occupying a D2d symmetry site inside MWO_4 (M=Sr, Pb, Ba and Ca) and M'MoO₄ (M'=Sr, Pb, Cd and Ca) crystals.

Fitted crystal-field parameters values (cm⁻¹) for Yb³⁺ doped CaWO4, PbWO₄, SrWO₄ and BaWO₄ crystals.

Crystal	B ₂₀	B ₄₀	B ₆₀	B ₄₄	B ₆₄	ζ	σ
CaWO ₄ : Yb ³⁺ (this work)	500.7	-483.8	-386	802	366	2904	3.5
PbWO ₄ : Yb ³⁺ (this work)	468.8	-327.9	-364.6	718.4	259.6	2903.4	7.9
SrWO ₄ : Yb ³⁺ (this work)	487.3	-328.8	-339.5	759.3	202.9	2903.2	9.5
BaWO ₄ : Yb ³⁺ (this work)	463.4	-283	-379	653	145	2902.2	17
CaWO ₄ : Yb ³⁺ [31]	484	-614	-16	739	509	2906	15.2

Fitted crystal-field parameters values (cm⁻¹) for Yb³⁺ doped CaMoO₄, PbMoO₄, SrMoO₄ and CdMoO₄ crystals.

Crystal (this work)	B ₂₀	B ₄₀	B ₆₀	B ₄₄	B ₆₄	ζ	σ
CdMoO ₄ : Yb ³⁺	436.3	-495	-388	876	324.6	2901.3	3.7
CaMoO ₄ : Yb ³⁺	470	-435.7	-358	809	284	2901.3	7.5
PbMoO ₄ : Yb ³⁺	427	-313	-334	731.5	281	2900.3	10.8
SrMoO ₄ : Yb ³⁺	444	-297.4	-336	773	203	2902.2	7.3

Table 3 Observed and calculated energy levels (cm⁻¹) of Yb³⁺ in CaWO₄, PbWO₄, SrWO₄,

M label ^a	CaWO ₄ : Y	b ³⁺	PbWO ₄ : Yb ³⁺			
	Cal. val.b	Exp. val.d	Δ	Cal. val.b	Exp. val.d	Δ
² F _{5/2}	10663	10665	-2	10599	10604	-5
•	10367	10366	1	10316	10314	2
	10279	10278	1	10263	10260	3
$^{2}F_{7/2}$	490	489	1	427	423	4
- / =	367	366	1	324	323	
	213	214	-1	160	162	-:
	0	0	0	0	0	
M label ^a	SrWO ₄ : Yb	3+	BaWO ₄ : Yb ³⁺			
	Cal. val.b	Exp. val.d	Δ	Cal. val.b	Exp. val.d	Δ
² F _{5/2}	10612	10605	7	10560	10549	1
	10315	10318	-3	10286	10291	- :
	10260	10264	-4	10248	10254	_
$^{2}F_{7/2}$	442	446	-4	400	408	_
- //2	331	332	-1	282	291	_
	152	150	2	131	127	
	0	0	0	0	0	
M label ^a	CaMoO ₄ : Y	'b ³⁺	PbMoO ₄ : Yb ³⁺			
	Cal. val. ^c	Exp. val.d	Δ	Cal. val. ^c	Exp. val.d	Δ
² F _{5/2}	10633	10628	5	10579	10586	_
-/-	10347	10349	-2	10312	10309	
	10000		•		100.46	
	10260	10263	-3	10250	10246	
² F _{7/2}	10260 469	10263 473		10250 411	10246 406	
$^{2}F_{7/2}$	469	473	-4	411	406	
² F _{7/2}	469 356	473 357	$-4 \\ -1$	411 329	406 327	
² F _{7/2}	469	473	-4	411	406	_
² F _{7/2} M label ^a	469 356 194	473 357 193 0	-4 -1 -1	411 329 163	406 327 166 0	_
	469 356 194 0	473 357 193 0	-4 -1 -1	411 329 163 0	406 327 166 0	
M label ^a	469 356 194 0 SrMoO₄: Y	473 357 193 0 b ³⁺	-4 -1 -1 0	411 329 163 0 CdMoO₄: Y	406 327 166 0 7b ³⁺	-
	469 356 194 0 SrMoO₄: Y Cal. val. ^c	473 357 193 0 b ³⁺ Exp. val. ^d	-4 -1 -1 0	411 329 163 0 CdMoO ₄ : Y Cal. val. ^b	406 327 166 0 7b ³⁺ Exp. val. ^d	<u> </u>
M label ^a	469 356 194 0 SrMoO₄: Y Cal. val. ^c 10596 10315	473 357 193 0 b ³⁺ Exp. val. ^d 10601 10313	-4 -1 -1 0 -1 0	411 329 163 0 CdMoO ₄ : Y Cal. val. ^b	406 327 166 0 7b ³⁺ Exp. val. ^d 10653 10381	<u></u>
M label ^a ² F _{5/2}	469 356 194 0 SrMoO₄: Y Cal. val. ^c 10596 10315 10254	473 357 193 0 b ³⁺ Exp. val. ^d 10601 10313 10251	-4 -1 -1 0 Δ	411 329 163 0 CdMoO ₄ : Y Cal. val. ^b	406 327 166 0 7 b ³⁺ Exp. val. ^d 10653 10381 10267	
M label ^a	469 356 194 0 SrMoO₄: Y Cal. val. [©] 10596 10315 10254 424	473 357 193 0 b ³⁺ Exp. val. ^d 10601 10313 10251 420	-4 -1 -1 0	411 329 163 0 CdMoO ₄ : Y Cal. val. ^b 10655 10380 10265 487	406 327 166 0 0 7b ³⁺ Exp. val. ^d 10653 10381 10267 489	
M label ^a ² F _{5/2}	469 356 194 0 SrMoO₄: Y Cal. val. ^c 10596 10315 10254	473 357 193 0 b ³⁺ Exp. val. ^d 10601 10313 10251	-4 -1 -1 0 Δ	411 329 163 0 CdMoO ₄ : Y Cal. val. ^b	406 327 166 0 7 b ³⁺ Exp. val. ^d 10653 10381 10267	

^a Multiplet label reflects principal SLI parentage of the calculated energy

The confidence in these phenomenological parameters and the

physical meaning of the fits are supported not only by the low σ values obtained, but also by their smooth variation with ionic radius of the host cation. Figs. 1 and 2 show the evolution of calculated CFPs with ionic radius of substitutional ions M2+ in MWO₄ and M'²⁺ in M'MoO₄, respectively. We noted a smooth

^b Calculated levels based on the Hamiltonian parameters listed in Table 1.

^c Calculated levels based on the Hamiltonian parameters listed in Table 2. d Experimental energy levels taken directly from Ref. [29].

Download English Version:

https://daneshyari.com/en/article/1811905

Download Persian Version:

https://daneshyari.com/article/1811905

<u>Daneshyari.com</u>