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a b s t r a c t

We study the localization properties of the two-dimensional (2D) Anderson model with diagonal

correlated disorder named visible vw and non-visible nw sites. Using the exact diagonalization of

Anderson Hamiltonian, investigating the behavior of the density of states (DOS), we found that states in

the center of the band E¼ 0 show critical behavior. The energy levels statistics (ELS) is also examined,

we found a crossover of the nearest-neighbor level spacing distribution PðsÞ from Wigner Surmise

distribution at small correlated disorder vw and nw (indicating a metallic behavior) to the Poisson

distribution at large correlated disorder vw and nw characteristic for localized states. In addition, an

analysis of width M dependence of the reduced localization length l=M is obtained by the transfer-

matrix method (TMM). For all investigated strengths of correlated disorder at E¼ 0 and E¼ þ2, the

reduced localization length l=M always decreases with increasing width. We found only delocalized

states in suggested energy and disorder range.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The scaling theory proposed by Abrahams et al. [1] in 1979 is
significant for the theory of disordered systems and the concept of
Anderson localization [2]. The scaling hypothesis means the
absence of metal–insulator transition (MIT) in (1D) and (2D)
disordered systems, so that with any amount of disorder, all states
are localized and the system is an insulator [3,4]. Contrary to this
well-established hypothesis, the pioneering experiment in 1994
by Kravchenko et al. [5], showed the existence of metal–insulator
transition for two dimensions interacting electron gas at low
electronic density.

However, recently some examples of (1D) systems with
correlated disorder [6–9] have been found to exhibit a number
of extended states. GaAs/AlGaAs superlattices including inten-
tionally correlated disorder (dimer barrier or well potentials)
were experimentally realized [10] and delocalization properties
were observed by photoluminescence measurements. Further-
more, the existence of a mobility edge separating extended and
localized states was confirmed for two-dimensional (2D) random
systems with long-range correlated disorder [11–13]. Moreover,
numerical studies on (2D) Anderson model with off-diagonal
disorder [14,15] led to delocalized states at band center energy

E¼ 0. It was shown by the transfer matrix method (TMM) that the
localization length at this energy diverges [14,16].

The statistical properties of the energy level spectra reflect the
character of eigenstates and have been proven to be a powerful
tool for characterizing the delocalization [17–21]. On the insulat-
ing side of the MIT, one finds that localized states that are close in
energy are usually well separated in space. Consequently, the
eigenvalues on the insulating side are uncorrelated. There is no
level repulsion and the probability of eigenvalues to be close
together is high. This is called level clustering and is described by
the Poisson statistics. On the other hand, extended states occupy
the same regions in space and their eigenvalues become
correlated. This results in level repulsion such that the spectrum
properties are given by the Wigner Surmise statistics.

Most of the theoretical work on Anderson localization has been
based on simple tight binding models, where the diagonal matrix
element of the Hamiltonian are independent random variables.
The question of statistically correlated matrix elements has not
been extensively studied, except in the case of the binary-alloy
disorder [22–24] in (1D). These special types of correlated
disorder can produce extended states.

In the present work, we investigate numerically the (2D)
Anderson model of localization including visible and non-visible
correlation on the energy sites which are nonindependent random
variables with vw or nw. The exact model is described in Section 2.
We calculate the density of states (DOS) and show the effect of
correlation on the states in the band center E¼ 0 and use energy
level statistics (ELS) to characterize the localization and
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delocalization. We check the system size dependence of the
reduced localization length (l=M ) up to width M¼ 150 at E¼ 0
and þ2 with different strengths of correlated diagonal disorder.
In Section 3, we present our results.

2. Model and method of calculation

The 2D Anderson Hamiltonian is given as [2]

H¼
XN

i

ei jiS/ij þ
XN

ia j

ti;jjiS/jj ð1Þ

The sites i and j form a simple square lattice of size N¼ L� L.
The onsite energies ei are taken to be randomly distributed in

the interval ½-W=2;W=2� where W is the width of the diagonal
correlated disorder and ti;j are the transfer integrals or hopping
elements restricted to nearest-neighbors to be randomly dis-
tributed in the interval ½c-w=2; cþw=2� thus c represents the
center and w the width of the off-diagonal disorder. For pure
diagonal disorder ti;j are constant (c¼ 1 and w¼ 0). We will
always use periodic boundary conditions.

The disorder correlation is obtained mathematically by defin-
ing the i and j state as numbers, if i and j are prime the correlation
is named visible vw and if not it is named non-visible nw [25]. A
typical configuration of visible correlation for system size
N¼ 40� 40 is given in Fig. 1.

We use the Routine DE4CSB [26] to compute the spectrum of H
for the diagonalization of sparse matrix. From this eingenvalue, the
DOS and the energy level spacing distribution PðsÞ is calculated,
here s¼ jEiþ1-Eij=D is the energy separation of consecutive
eigenvalues Ei divided by the mean level separation D.

The transfer matrix method (TMM) [27,28] is used to study the
states localization properties in disordered systems to calculate
the decay lengths of wave function on strips (quasi-1D systems)
of width M and length L�M

Cnþ1

Cn

 !
¼
½tjjnþ1�

-1ðE-en-H?Þ -½tjjnþ1�
-1tjjn

1 0

 !
Cn

Cn-1

 !
¼ Tn

Cn

Cn-1

 !

ð2Þ

Here Cn ¼ ðCn;1;Cn;2; . . . ;Cn;MÞ
T is the wave function at all

sites of the n layer, en ¼ diag ðen;1; en;2; . . . ; en;MÞ is the energy, H?
the hopping hamiltonian in the n-th layer, 1 and 0 are unit and
zero matrices, tjjnþ1 ¼ diagðtjjn;1 . . . ; t

jj

n;MÞ is the diagonal matrix
represents the hopping elements connecting the ðn-1Þ layer with
(n) layer and Tn is the transfer matrix. The evolution of the wave
function is given by the product of the transfer matrices tk ¼ Tk �

Tk-1 � � � � � T1

The eigenvalues of exp½þ- giðMÞ� of limk-1ðtt
k � tkÞ

1=2k exist and
the smallest Lyapunov exponent gmin40 corresponds to the
largest localization length l at energy E:

l¼
1

gmin

ð3Þ

3. Results and discussion

In this section we calculate the density of states (DOS) in order
to study the effect of correlation on the states in the band center
E¼ 0 and use energy level statistics (ELS) to characterize the
delocalization transition for correlated disorder nw and vw. The
system size is N¼ 40� 40. The DOS and the energy level spacing
distribution PðsÞ are obtained by averaging over 500 samples and
energy interval DE¼ 0:01.

In Fig. 2, we plotted the density of states (DOSÞ. It is
clearly seen that the DOS presents a singularity at the band
center E¼ 0 which is more pronounced for non-visible diagonal
disorder (nw¼ 2, vw¼ 0), because the concentration of non-
visible sites is less than that of visible sites, and suppressed when
the system is completely disordered (vw¼ nw¼ 2). This is the
major effect of the correlation on the DOS. In the usual Anderson
model with diagonal disorder, this singularity is quickly
suppressed when the disorder strength is increased [14]. It was
found by Eilmes et al. that for an uncorrelated disorder, the
singularity at E¼ 0 is suppressed when the disorder strength is
increased [15].

The energy level spacing distribution PðsÞ has been used [29] as
a criterion in distinguishing localized states, which follows the
Poisson distribution PðsÞ ¼ expð-sÞ, from extended state which
follows the Wigner distribution PðsÞ ¼ ðp=2Þs expð-ðp=4Þs2Þ.

Our numerical studies of PðsÞ show a crossover for weak visible
disorder from Wigner distribution (indicating a metallic behavior)
to Poisson distribution for strong visible disorder (see Fig. 3a). The
same behavior is observed for non-visible disorder (see Fig. 3 b).
However, in the presence of visible and non-visible disorder, PðsÞ

0

5

10

15

20

25

30

35

40

45
 Visibles sites 

si
te

s 
j

Sites i
0 5 10 15 20 25 30 35 40

Fig. 1. Visibles sites of square lattice for size N¼ 40� 40.
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Fig. 2. (Color online) Density of states for purely diagonal disorder.
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