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a b s t r a c t

The iterated perturbation theory (IPT) equations of the dynamical mean field theory (DMFT) for the

half-filled Hubbard model are solved on nearly real frequencies at various values of the Hubbard

parameters, U, to investigate the nature of metal–insulator transition (MIT) at finite temperatures. This

method avoids the instabilities associated with the infamous Padé analytic continuation and reveals

fine structures across the MIT at finite temperatures, which cannot be captured by conventional

methods for solving DMFT-IPT equations on Matsubara frequencies. Our method suggests that at finite

temperatures, there is a crossover from a bad metal to a bad insulator in which the height of the quasi-

particle (Kondo) peak decreases to a non-zero small bump, which gradually suppresses as one moves

deeper into the bad insulating regime.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Dynamical mean field theory (DMFT) approximation which is
based on a mapping of lattice models onto a single quantum
impurity subject to a self-consistency condition has been
successful in addressing the issue of metal–insulator transitions
(MIT) in correlated electron systems at zero temperature [1,2]. It
is realized experimentally that MIT in three-dimensional homo-
geneous systems of transition metal oxides is driven by the
strength of electron–electron interactions [3]. DMFT predicts a
zero-temperature metal insulator transition as the local interac-
tion U (the Hubbard parameter) exceeds a critical strength Uc

[1,4]. At finite temperature there is no qualitative distinction
between the insulating and metallic states and a first order MIT is
occurred in the Hubbard model [5,6]. However, As in any
approximation theory, the complete determination of the physics
of MIT in the DMFT method involves the computational solving of
the equations and so we need for development of new reliable
methods to overcome the non-analytic errors produced in the
process of numerical calculation.

Beginning with DMFT equations, one has to calculate the
Feynman diagrams at non-zero temperature and analytically
continue the equations to real frequency axis to interpret the
results. The practical task of calculating the Feynman diagrams is
performed with Matsubara method that provides a very con-
venient and neat way for numerical calculations of the diagrams

[7]. The essential ingredient is that the Wick rotation t¼ it

replaces the oscillatory e�ixkt factors by decaying e�xkt factors at
imaginary time, which makes it convenient for putting on
computer and so the convergence in iterative or self-consisted
formulations of perturbation theory is particularly achieved fast.
However, the computational price will be payed when one
attempts to undo the Wick rotation at the end of calculation to
obtain dynamical quantities by analytical continuing ion-oþ iZ,
where Z is an infinitesimal positive constant, Z¼ 0þ .

The hurdle one faces in undoing the Wick rotation is that, if
one uses the Padé approximation [8], and fits a quotient of two
polynomials fNðzÞ and gMðzÞ to the table of data obtained for
Matsubara frequencies ion, and then replaces z-oþ iZ in the
resulting function, the calculated spectral weights are not always
stable with respect to variations in parameters N;M. Even if for
some parameter regime, or for some particular problem one
obtains relatively stable results, the aforementioned disrepute of
the Padé approximation warns us about the reliability and/or the
quality of the dynamical quantities obtained in this way.

There has been some proposals for reliable way of using the
Padé approximation in analytic continuation of numerical data:
Beach et al. [8] proposed a symbolic computer aided algebra with
arbitrary precision (typically 100–200 decimal places, which lack
in single or double precision arithmetics of standard program-
ming languages like C++ or Fortran). They also proposed a
quantitative measure for the reliability of continued data.
Mishchenko et al. [9,10] proposed an stochastic optimization
method which allows one to handle both broad and sharp
features of the spectrum on equal footing.

On the other hand, Schmalian et al. proposed an alternative
method which is quite intuitive and general [11]: Instead of
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solving the diagrammatic equations for Matsubara frequencies
ion, solve them for frequencies oþ ig, where g is a finite constant.
The finite value of g (usually taken to be less than the first nonzero
Matsubara frequency) provides the damping required for con-
vergence of the iterative solutions. The analytic continuation from
oþ ig to oþ iZ, where Z¼ 0þ , is stable and also sustains fine
features of the spectral function, such as shadow bands of the high
temperature superconductors. Schmalian et al. found this feature
by applying this method to solve the diagrammatic equations of
the fluctuation exchange approximation [12].

Keeping the aforementioned concerns about the reliability of the
Padé analytic continuation procedure in mind, in this paper we use
the method of Schmalian et al. [11] to re-examine the nature of MIT
in the half-filled Hubbard model at finite temperatures within the
DMFT approximation scheme. We find that paying manipulation
price at the beginning, for solving slightly more difficult equations for
oþ ig and then providing reliable Padé analytic continuation with
absolutely no negative spectral weights, pays off and also reveals fine
structure in the insulating side of the MIT. A small bump in the
spectral weight which persists in the insulating phase is stably
produced in our approach and cannot be captured by Padé analytical
continuation of the solutions of DMFT equations for Matsubara
frequencies. The asymptotic behaviors at T-0 limit in our approach
agree with other methods of solving the DMFT equations.

The paper is organized as follows: First we analytically
continue the iterated perturbation theory (IPT) [13–15] equations
of DMFT to oþ ig line above the real frequency axis. Then we
present the numerical solutions of the resulting equations for
various values of the Hubbard parameters, U, at half-filling, and
elevated temperatures. Finally we present our conclusions.

2. Formulation

Within DMFT approximation, the problem of interacting
electrons on a lattice can be mapped onto an effective impurity
problem surrounded by a self-consistent bath. The impurity
Green’s function, G, is related to its bare counterpart via the Dyson
equation [1],

G�1
0 ¼Sþ

1
~D
ðionþm�SÞ ð1Þ

where

~Dðionþm�SÞ ¼
Z 1
�1

de DðeÞ
ionþm�S�e

ð2Þ

is the Hilbert transform of density of states (DOS). In (2),
~Dðionþm�SÞ is the on-site full Green’s function for site o, i.e.
Goo and its imaginary part gives the interacting DOS,

GðionÞ ¼
~Dðionþm�SðionÞÞ ð3Þ

In IPT approximation, the self-energy is given by the second
order perturbation theory [1] as

SðionÞCU2

Z b

0
dt eiontĜ0ðtÞĜ0ðtÞĜ0ð�tÞ ð4Þ

DMFT equations written in Matsubara form yield no dynamical
quantities, until the analytical continuation to real frequency axis
is done, ion-oþ iZ. To see where lies the root of numerical
problems, one notes that the real-frequency and imaginary time
Green’s functions are connected by [17]

GðtÞ ¼ 1

p

Z 1
�1

do e�to

1þe�o=T
Im Gðoþ i0þ Þ ð5Þ

where GðtÞ ¼ T
P

neiontGðionÞ is the Fourier transform of Matsu-
bara function. Due to exponential factors, the small changes in

GðtÞ (equivalently in GðionÞ) are associated with large changes in
Gðoþ iZÞ.

Now we turn our attention to the question of analytic
continuation of DMFT equations in IPT approximation, parallel
to the work of Schmalian et al. [11]. We rewrite the equation to be
solved for nearly real frequencies oþ ig, with a finite g. Then, we
go to the limit g-0þ via Padé approximation. Padé approxima-
tion at this stage turns out to be stable. The finite parameter g is
chosen to provide the attenuation factors (as will be seen below)
needed for convergence of the self-consistent equations.

The first equation to be continued analytically to nearly real
axis is (3), which bears no difficulty,

Gðoþ igÞ ¼ ~Dðoþ igþm�Sðoþ igÞÞ ð6Þ

The next equation to be continued to nearly real-frequency axis is
(1), which again simply reads

G�1
0 ðoþ igÞ ¼Sðoþ igÞþ 1

~D
ðoþ igþm�Sðoþ igÞÞ ð7Þ

The main problem relies on analytically continuing the IPT
approximation, Eq. (4) to nearly real frequency axis. This equation
depends on the frequency not only through the Fourier factor
eiont, but also through Green’s function G0ðtÞ. In this case,
analytical continuation must be performed through the change
of integral to its retarded form. Here the difficulty arises from the
fact that we have solved the action equation (for a detailed review
see Georges et al. [1, Section III.A]), on the imaginary axis to yield
Matsubara function, so if one wishes to gain the physical
quantities (such as retarded Green’s function) one must either
solve the problem originally on real frequency axis or analytically
continue it. Kajueter and Kotliar [18,4] made an ansatz for self-
energy on the real frequency axis of the form

SðoÞ ¼Uþ
ASð2ÞðoÞ

1�BSð2ÞðoÞ
ð8Þ

where Sð2Þ is the second order contribution to self-energy from (4). Of
course, this equation alone does not solve the problem, since there
are other functions written in Matsubara form. Fortunately there
is another way to overcome the problem. Using the Fourier
transformation

G0ðtÞ ¼
X1

n ¼ �1

eiontG0ðionÞ ð9Þ

Eq. (4) can be written as
Z b

0
dt eiontG0ðtÞG0ðtÞG0ð�tÞ ¼

X
k

G0ðiokÞw0ðiðonþokÞÞ ð10Þ

where

w0ðiðonþokÞÞ ¼
X

l

G0ðiolÞG0ðiðonþolþokÞÞ ð11Þ

is the particle–hole bubble. With the aid of contour integration and
employing the complex forms of Fermi and Bose functions,

f ðzÞ ¼
1

ebzþ1
; nðzÞ ¼

1

ebz�1
ð12Þ

which have their poles exactly at Matsubara frequencies
z¼ ion ¼ ið2nþ1Þp=b and z¼ io0n ¼ ið2nÞp=b, respectively, the
summation over imaginary frequencies can be done,

w0ðinkÞ ¼
X

l

G0ðiðnkþolÞÞG0ðiolÞ

¼

Z 1
�1

de
2pi
ff ðeþ ig0ÞG0ðinkþeþ ig0ÞG0ðeþ ig0Þ�f ðe�ig0ÞG0ðink

þe�ig0ÞG0ðeþ ig0Þþ f ðeþ ig0ÞG0ðeþ ig0ÞG0ðeþ ig0�inkÞ

�f ðe�ig0ÞG0ðe�ig0ÞG0ðe�ig0�inkÞg ð13Þ
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