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a b s t r a c t

We analyze in detail the solid-on-solid (SOS) model for growth processes on a square substrate in 2+1

dimensions. By using the Markovian surface properties, we introduce an alternative approach for

determining the roughness exponent of a special type of SOS model—the restricted-solid-on-solid

(RSOS) model—in 2+1 dimensions. This model is the SOS model with the additional restriction that the

height difference must be S=1. Our numerical results show that the behavior of the SOS model in 2+1

dimensions for approximately SZS� � 8 belongs to the two different universality classes: during the

initial time stage, tot� it belongs to the random-deposition (RD) class, while for t�o t{tsat it belongs

to the Kardar–Parisi–Zhang (KPZ) universality class. The crossover time (t�) is related to S via a power

law with exponent, Z¼ 1:9970:02 at 1s confidence level which is the same as that for 1+1 dimensions

reported in Chein and Pang (2004) [8]. Using the structure function, we compute the roughness

exponent. In contrast to the growth exponent, the roughness exponent does not show crossover for

different values of S. The scaling exponents of the structure function for fixed values of separation

distance versus S in one and two space dimensions are x¼ 0:9270:05 and x¼ 0:8670:05 at 1s
confidence level, respectively.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Surface growth processes, especially the formation of thin film
deposits, have been studied using various approaches in complex
systems and statistical analysis [1–7]. The factors which control
surface growth phenomena have immense phase space. Conse-
quently, to be able to analyze these phenomena one needs to
make many assumptions, which can lead to results that are
unreliable. Combining insights from computational simulation
and simplified analysis will likely give better results. It is well
known that the understanding of phenomena such as advances of
bacterial colonies, electrochemical deposition, flameless fire
fronts and molecular-beam-epitaxial growth is of considerable
importance in the control of many interesting growth processes in
industries [7–9]. The simplest surface growth model is the so-
called statistical deposition model [7,10]. Some models proposed
to explore growth surfaces, such as the Family model [11],
ballistic deposition (BD) model [12,13] and Eden model [14], are
able to account for many of the properties of some real
systems. For example, the BD and Eden models can accurately
simulate vapor deposition and biological growth. However,

these models tend to ignore the microscopic details of the
interfaces, and cannot provide accurate scaling exponents. In
addition many fractal features of real systems remain unex-
plained [9,15,16]. To solve these problems, one should modify the
above models.

The solid-on-solid (SOS) model is more suitable to describe a
real surface’s properties than those models described above
[8,17–19]. This growth model does not exhibit strong corrections
to scaling and consequently allows us to determine accurate
values of scaling exponents [7,17,18]. The restricted-solid-on-
solid (RSOS) model (a modified version of the SOS model),
proposed by Kim et al. [17], is most important due to its wide
applicability, such as for surface roughening modeling via
exothermic catalytic reactions on the substrate [8]. Various
aspects of the solid-on-solid model for surface growth have been
studied: the effect of long-range elastic interactions [20], growth
processes with correlated noise [21], phase transitions as a
function of temperature-like parameters [22], the (0 0 1)-surface
morphology of GaAs annealed at fixed temperature and pressure,
the well explained by annealed version of the RSOS model [23,24].
Crossover from random to correlated regime [25,26], relaxation to
steady states [27], distribution of local configurations for finite
values of S [8], Markov analysis [28], the effect of hopping in
various local growth rules on the linear and nonlinear fourth-
order dynamical growth equation [29], growth model in higher
dimensions [30] and, more recently, the growth on fractal
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substrates based on the SOS model [31], has also been addressed
in the literature.

As mentioned in many previous studies, it is believed that the
RSOS model belongs to the Kardar–Parisi–Zhang (KPZ) univers-
ality class in the continuum limit [32,33]. The KPZ equation is one
of the most important phenomenological theories in which time
evolution of the interface has been characterized by the height
function hð~r ; tÞ at position ~r and time t. The governing equation is
given by [34]

@hð~r ; tÞ

@t
¼ nr2hð~r ; tÞþ

l
2
½rhð~r ; tÞ�2þKð~r ; tÞ: ð1Þ

Here n and l represent the surface tension and the excess velocity
respectively, while Kð~r ; tÞ is a Gaussian noise with zero mean and
co-variance /Kð~r ; tÞKð~r

0
; t0ÞS¼Ddd

ð~r�~r
0
Þdðt�t0Þ where d is the

dimension of the substrate, and D is the noise intensity [7,12].
The interface width reads as
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1
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This characterizes the roughness of the interface, for growth in a
substrate of length L, and hðtÞ is the spatial average of height at
time t. For short times, the interface scales as follows:

WðL; tÞ � tb; ð3Þ

where b is called the growth exponent. For long times, a steady
state is attained and the width is saturated as follows:

WsatðL; tÞ � La: ð4Þ

Here a is the roughness exponent. Eqs. (3) and (4) correspond to
limits of the dynamical relation of the Family and Vicsek ansatz:

WðL; tÞ � Laf
t

Lz

� �
: ð5Þ

The dynamical exponent, z¼ a=b, characterizes the crossover
from the growth regime to the steady state. The exact scaling
exponents are known in d=1, but no exact value has been
obtained in two or more dimensions [16]. Many discrete models
fall into the KPZ class, such as the RSOS model [17,18] and ballistic
deposition (BD) [12]. Most of the reported values of a range from
0.37 to 0.40 [17,18,35–37], confirmed by numerical solutions of
the KPZ equation [38–40].

The competition between different growth mechanisms during
particle deposition, as well as phase transitions which are very
often observed in many real growth processes, has been
investigated in many studies [25,26]. Recently, it has been
confirmed that there exists a crossover between the random
deposition and KPZ classes at the initial growth stages for all
values of the height restriction parameter between nearest
neighbors for the SOS model in 1+1 dimension [8]. Here we are
interested in investigating the possibility of the existence of
crossover in the SOS model in 2+1 dimensions. In addition, we
give a new approach to determine the roughness exponent using
Markovian properties of surfaces.

The rest of this paper is organized as follows: in Section 2, we
introduce the Markovian surface, and by using the characteristic
function, the roughness exponent is calculated. The SOS model for
finite values of S is numerically investigated in Section 3.
Crossover in the growth mechanism and corresponding properties
are also investigated in detail in Section 3. Section 4 is devoted to
conclusions and summary of our studies.

2. Markovian surface

The Markovian surface is one of several models to represent
multi-level (stepped) crystalline surfaces. In this model, it is
assumed that the steps have only a mono-atomic height.
Displacement through any steps may be upward or downward,
each occurring with equal probability. Let g be the probability of
meeting an atom displaced vertically either upward or downward
in going from any lattice site to an adjacent one. That is, the
probability of encountering a step (Dh¼ 71) while the corre-
sponding probability for a lateral walk, namely Dh¼ 0 (h is the
height of the surface), is equal to 1�g. Since every displacement or
step occurs independent of any other, the step surface is mapped
to the path of a Markovian chain [41]. For the Markovian chain or
random walk model, there exist three choices for the displace-
ment at each walk: an upward walk with a probability g=2, a
downward walk with a probability g=2 and a lateral walk with a
probability 1�g [41]. As mentioned in the introduction, here we
rely on the Markovian surface to explore the scaling exponent of
the RSOS growth model. To this end, we introduce the character-
istic function defined as the Fourier transform of the probability
distribution function, PðDhð~rÞÞ, with respect to Dhð~rÞ ¼ hð~rÞ�hð0Þ
after saturation time, as

Zdðl;~rÞ ¼/eilc½hð~r Þ�hð0Þ�S; ð6Þ

where c is the unit of step variations, which is equal to one in the
Markovian surface and RSOS model. The height difference,
hð~rÞ�hð0Þ can be represented as the sum of the height differences
between successive sites from r=0 to r=na in one dimension and
to r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2

xþn2
y Þ

q
a in two dimensions (a is lattice unit). In one

dimension we have [41]

hðnaÞ�hð0Þ ¼
Xn

i ¼ 1

½hðiaÞ�hðði�1ÞaÞ�: ð7Þ

For the RSOS model in 2+1 dimensions, the height difference
between any sites with coordinates (nx,ny) and its nearest
neighbor sites with coordinates (nx71;ny) and (nx;ny71) is
71. To calculate the characteristic function, we should move
from point ~r ¼ ð0;0Þ to ~r ¼ ðnx;nyÞ in different paths like path A as
shown in Fig. 1. So the vector sum of the trajectories within path A

gives the vector ~r . Due to isotropy and homogeneity of the

r = (nx,ny)

r = (0,0)

A

nx

ny

Fig. 1. A typical trajectory from point r=(0,0) to r= (nx,ny).
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