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a b s t r a c t

In this paper a model for viscoanelastic isotropic material in the formalism of Kluitenberg’s theory on

mechanical relaxation phenomena is considered. Moreover an expression of the complex modulus is

obtained to compare the results obtained with experimental data. In particular, by considering the

results obtained from some authors of us in a previous paper, we shall use a different condition that

allows to get the phenomenological and state coefficients both low and high frequencies. Finally, the

results are applied to a supercooled m-toluidine in order to compare the experimental data and

theoretical functions of frequency G1 and G2 so obtained.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that rheology is defined as the science of
flowing materials or better it studies the relations expressing the
stress as function of deformation in a given material [1]. The
analysis of the mechanical properties (elasticity, anelasticity,
viscosity, plasticity) in different materials is performed in the
context of the continuum mechanics theories and numerous are
the models introduced from several authors to describe them
[2–6] by mean of representations including massless Hookean
springs and Newtonian dashpots and these are used in order to
establish differential equations which describe the mechanical
properties of the continua under investigation [1,7].

It is well known that for a linear viscoelastic solid medium to
an strain the initial stress will be proportional to the applied
strain and decrease with time at a rate characterized by the
relaxation time s. This behavior is called stress relaxation. For
instance one viscoelastic model, called the Maxwell model [2]
predicts behavior of a spring (elastic element) being in series with
a dashpot (viscous element), while the Voigt model [3] places
these elements in parallel. By considering different combinations
of a single spring and a single dashpot (in series or in parallel) it is
possible to obtained more sophisticated models as viscoanelastic
materials, etc. It is not difficult to build generalization of the
single models. Very common in rheology is the so called
‘‘standard linear solid model’’ attributed to Zener [8]. An

alternative procedure to introduce the relaxation phenomena is
to subject the specimen to an harmonic strain and simultaneously
measure the stress [9]. For linear viscoelastic behavior the stress
and strain will both vary sinusoidally, but the strain lags behind
the stress. Indeed, when a material is subjected a shear strain by
imposing a sinusoidal deformation e¼ esinðotÞ it is possible to
assume that the resulting stress t is also a sinusoidal function
t¼ sinðotþjÞ. This gives rise to a modulus G1, called storage
modulus, which is p=2 out of phase with the deformation, an
another part G2, called loss modulus, in phase with the rate of
deformation. The latter is related to viscous dissipation in the
sample tested. This information is important because it allows to
compare the storage (e.g. elasticity) and the loss (e.g. viscosity)
phenomena. The angle j represents this information through the
ratio of the two moduli: tanðjÞ ¼ G2=G1. These expressions are
represented in the complex domain and G¼G1+ iG2 is defined as
the complex modulus.

The theory of the thermodynamics of irreversible processes is a
good staring point for the derivation of the constitutive equations
of materials with mechanical relaxation. Indeed phenomena with
mechanical relaxation have been studied extensively with the
methods of non-equilibrium thermodynamics [1,10]. In the
context of the thermodynamics with internal variable [11]
Kluitenberg proposed a theoretical model describing the behavior
of an isotropic viscoanelastic medium with memory that
generalizes the classical model of the continuum mechanics after
suitable positions on the coefficients in the relaxation differential
equation.

More recently, on the basis of Kluitenberg theory of mechan-
ical phenomena, a method to measure experimentally the
phenomenological coefficients as function of frequency and to
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verify some inequalities which occur in a thermodynamical model
for viscoanelastic media with memory when it is subjected to an
harmonic shear strain, was proposed [12]. The purpose of the
present paper is to suggest a model for the dynamic moduli G1

and G2, in case of low and high frequencies, by starting from
Kluitenberg’s theory and to compare the results obtained with
experimental data. Moreover, by taking into account the results
obtained in paper [12] we shall modify one condition which leads
to a form of the phenomenological and state coefficients in such a
way they will be positive for any value of frequency. We shall
recall briefly in the following section the fundamental aspects of
Kluitenberg’s theory [13–16].

2. Extended thermodynamic model for mechanical
relaxations

In several papers [11] it was shown that in order to discuss
same mechanical relaxation phenomena the total strain tensor e is
influenced by a ‘‘hidden’’ internal variable [1,13] and it has been
shown that it can be splits into two parts as follows:

eik ¼ e
ð0Þ
ik þe

ð1Þ
ik ð2:1Þ

where eð1Þik is a function of an internal variable while eð0Þik represents
the thermoelastic part of the strain if viscous stress does not
occur. By taking into account this decomposition and neglecting
the cross-effect between viscous and inelastic flows, the following
rheological equation for viscoanelastic media of order one with
memory can be written [11]

d ~tik

dt
þRðtÞ0

~tik ¼ RðeÞ0
~eikþRðeÞ1

d~eik

dt
þRðeÞ2

d2 ~e ik

dt2
ð2:2Þ

where ~tik and ~eik are the deviators of the stress and strain tensors,
respectively. The coefficients of the last differential equation
assume the following expressions [11]:

RðtÞ0 ¼ að1,1ÞZð1,1Þ
s

RðeÞ0 ¼ að0,0Þðað1,1Þ�að0,0ÞÞZð1,1Þ
s

RðeÞ1 ¼ að0,0Þ það1,1ÞZð1,1Þ
s Zð0,0Þ

s

RðeÞ2 ¼ Z
ð0,0Þ
s

8>>>>><
>>>>>:

ð2:3Þ

in which a(0,0) and a(1,1) are state coefficients related to elasticity
and inelasticity phenomena, respectively, while Zð0,0Þ

s and Zð1,1Þ
s are

phenomenological coefficients related to shear viscosity and
fluidity, respectively. The stress–strain relation for ordinary
viscous fluid, for elastic media and for Maxwell and Kelvin
bodies may be regarded as special case of Eq. (2.2). We will
propose to relate the phenomenological and state coefficients
(2.3) to quantities that can be experimentally measurable and
then to verify the following inequalities, that follows from the
principle of entropy production:

að0,0Þ40

að1,1Þ40

Zð1,1Þ
s 40

Zð0,0Þ
s 40 ð2:4Þ

In some previous papers [12], the model proposed by Kluitenberg
was used to show a method to measure experimentally the
phenomenological coefficients and in particular a condition for
applicability of Kluitenberg theory was determined. The mechan-
ical measurements on polymeric material(poly-isobutilene) at
different frequencies and fixed temperature was carried out and
they allow to give the phenomenological coefficients as functions

of frequencies [12]. Analogously, following the procedure devel-
oped in these papers, we will study the mechanical phenomena
with relaxation by imposing to the medium a mechanical
perturbation considered as extensive variable (causa) and it will
analyze the relative response as intensive variable (effect) as
Maxwell’s representation of the relaxation phenomena [1].

In the following we will consider the case in which just one
component of the strain and stress is different from zero and, for
sake of simplicity, we will replace the component of the strain ~e
with e and the component of the stress ~t with t. Let us suppose
that a generic material is subjected to a sinusoidal shear
strain [17]:

e¼ e0sinot ð2:5Þ

where e0 ¼ constant and o¼ 2pn are, respectively, the amplitude
and the angular frequency of the deformation. As consequence,
the shear stress [7,18] (intensive variable¼effect) will also vary
sinusoidally and it will present a phase lag j with respect to
strain. This will be function of the frequency of the deformation
because it results from the time necessary for molecular
rearrangement and from dissipative phenomena [18]. The stress
will assume the following form:

t¼ t0ðoÞsin½otþjðoÞ� ð2:6Þ

or

t¼ G1e0sinðotÞþG2e0cosðotÞ ð2:7Þ

where the following functions

G1ðoÞ ¼
t0

e0
cosjðoÞ ð2:8Þ

G2ðoÞ ¼
t0

e0
sinjðoÞ ð2:9Þ

are storage and loss moduli. It is possible to show that they are
directly proportional to the peak energy stored per cycle and to
the energy dissipated as heat per cycle, respectively [17]. The
mathematical treatment can be simplified by using a complex
representation of stress and strain. Writing applied shear strain as

e� ¼ e0eiot ð2:10Þ

then the shear stress will vary according to

t� ¼ t0eðiotþjÞ ð2:11Þ

The complex shear modulus is given by

G� ¼
t�

e�
¼
t0

e0
eij ð2:12Þ

By introducing the expressions (2.10) and (2.11) into Eq. (2.2) and
taking into account that the coefficient RðtÞ0 ¼ 1=s, where s is the
relaxation time, and the expression (2.12), the following relation
holds:

G� ¼
RðeÞ0 þRðeÞ1 io�RðeÞ2 o2

ioþ1

s

ð2:13Þ

Separating the real and imaginary component of G*
¼G1+ iG2 one

obtains:

G1 ¼
s
�

RðeÞ0 �RðeÞ2 o2
�
þs2o2RðeÞ1

1þo2s2
ð2:14Þ

G2 ¼
sRðeÞ1 o�s2

�
R0ðeÞo�o3RðeÞ2

�
1þo2s2

ð2:15Þ

Following the paper [12], since the solution of the relaxation
equation of stress and the expression (2.7) represents the same
phenomenon, or better limiting the application to those materials
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