Contents lists available at ScienceDirect

Physica B

journal homepage: www.elsevier.com/locate/physb

N.N. Syrbu^a, B.V. Korzun^b, A.A. Fadzeyeva^b, R.R. Mianzelen^b, V.V. Ursaki^{c,*}, I. Galbic^a

^a Technical University of Moldova, 168 Stefan cel Mare avenue, 2004 Chisinau, Moldova

^b Institute of Physics of Solids and Semiconductors, P. Brovki 17, Minsk 220072, Belarus

^c Institute of Applied Physics, Academy of Sciences of Moldova, 5 Academy street, 2028 Chisinau, Moldova

ARTICLE INFO

Article history: Received 21 March 2009 Received in revised form 27 February 2010 Accepted 22 April 2010

Keywords: Chalcopyrites Optical reflectivity Photoluminescence Exciton polaritons

1. Introduction

The CuAlS₂ compound belonging to the I-III-VI₂ materials crystallizes in the chalcopyrite structure with the $I\overline{4}2d - D_{2d}^{12}$ space group and it is the most wide bandgap material from this group. The I-III-VI₂ crystals are of interest from the point of view of their implementation in optoelectronic devices [1,2]. Solar cells are successfully developed on the basis of materials from this group [3–9]. Thin film device structures were obtained on some of these materials. The photoelectrical properties of surface barrier structures have been investigated [4,5]. The energy band structure of I-III-VI₂ chalcopyrites is calculated as for nearest analogs of binary compounds with zincblende structure (ZnSe, ZnS) [10-12]. All the crystals from the I-III-VI₂ group are characterized by strong anisotropy of optical properties in the region of fundamental absorption [13-29]. Many of chalcopyrite compounds are obtained by molecular beam epitaxy in the form of epitaxial layers, including the CuAlS₂ compound [13]. The CuGaS₂-CuAlS₂ structures are interesting for the development of new optical devices for the green and blue spectral ranges. There is a relatively small mismatch of crystal lattices (0.4%) and a relatively big difference in the bandgaps of CuGaS₂ and CuAlS₂ crystals in this system.

In this paper we investigate the optical spectra of $CuAlS_2$ crystals in the exciton region. The energy positions of n=1 and n=2 lines of the three A-, B-, and C-exciton series are determined.

* Corresponding author.

E-mail address: ursaki@yahoo.com (V.V. Ursaki).

ABSTRACT

Three exciton series are investigated in the reflectivity spectra of CuAlS₂ crystals at the temperature of 10 K. The $n^A = 1$ ($\omega_T = 3.543$ eV, $\omega_L = 3.546$ eV) and $n^A = 2$ (3.565 eV) lines of the Γ_4 (A-series) excitons are observed in the $E \parallel c$ polarization. In the $E \perp c$ polarization, the Γ_5 excitons ($n^B = 1$ at 3.668 eV and $n^B = 2$ at 3.686 eV) of the B-series, and $n^C = 1$ at 3.813 eV of the C-series are observed. The parameters of the excitons and the more exact values of the $\Gamma_7 - \Gamma_6$, $\Gamma_6 - \Gamma_6$, and $\Gamma_7 - \Gamma_6$ energy gaps are determined. The crystal field and spin–orbit splitting of the valence band is calculated. The electron (m_{c1}^*) and hole (m_{V1}^*, m_{V2}^* , and m_{V3}^*) effective masses have been estimated.

© 2010 Elsevier B.V. All rights reserved.

The exciton binding energy and the more precise values of the $\Gamma_7 - \Gamma_6$, $\Gamma_6 - \Gamma_6$, and $\Gamma_7 - \Gamma_6$ energy gaps are determined. The crystal field and spin–orbit splitting of the valence band are calculated. The electron (m_{c1}^*) and hole $(m_{V1}^*, m_{V2}^* \text{ and } m_{V3}^*)$ effective masses are estimated. The contours of the exciton reflectivity spectra are calculated according to the one-oscillator model of the dispersion relations.

2. Experimental

CuAlS₂ crystals in the form of plates with $2.5 \times 8 \text{ mm}^2$ mirrorlike surfaces and thickness of 1–2 mm were grown by chemical vapor transport. The surfaces of some plates are parallel to the C-axis. The orientation of crystals was determined according to X-ray diffraction data. The optical reflectivity and luminescence spectra were measured with a double SDL-1 spectrometer. For the low temperature measurements the samples were mounted on the cold station of an LTS-22 C330 optical cryogenic system. The luminescence spectra were excited by the 325 nm line of a Melles Griot He–Cd laser.

3. Results and discussions

According to theoretical calculations of energy band structure [10–12], the minimum inter-band gap is formed by direct electron transition in the center of the Brillouin zone. The lower conduction band is of Γ_6 symmetry, while the upper V_1 , V_2 , and V_3 valence bands are of Γ_7 , Γ_6 , and Γ_7 symmetries, respectively.

^{0921-4526/\$ -} see front matter \circledcirc 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.physb.2010.04.052

From group theoretical arguments and direct product of the group representations, the interaction of a hole from the Γ_7 band with an electron from the Γ_6 band leads to the formation of intrinsic excitons with ground states of Γ_3 , Γ_4 , and Γ_5 symmetries ($\Gamma_6 \times \Gamma_7 = \Gamma_3 + \Gamma_4 + \Gamma_5$). The Γ_4 exciton transition is allowed in $E \parallel c$ polarization, the Γ_5 exciton transition is forbidden in both polarizations. The interaction of a hole from the Γ_6 band with an electron from the Γ_6 band leads to the formation of three exciton series with Γ_1 , Γ_2 and Γ_5 symmetries. The Γ_5 excitons are allowed, while Γ_1 and Γ_2 excitons are forbidden in $E \perp c$ polarization according to the selection rules.

The $n^A = 1$ ($\omega_T = 3.543$ eV, $\omega_L = 3.546$ eV) and $n^A = 2$ (3.565 eV) lines of the Γ_4 exciton hydrogen-like series are observed in the reflectivity spectra of CuAlS₂ crystals measured at 10 K in the $E \parallel c$ polarization (Fig. 1). The reflectivity spectra in the region of the $n^A = 1$ line are of a usual excitonic shape with a maximum at 3.543 eV and a minimum at 3.546 eV. These peculiarities are due to the presence of the transversal and longitudinal excitons. A longitudinal-transversal exciton splitting of 3 meV is estimated for the Γ_4 excitons from these data. A Rydberg constant of 32 meV is determined for the Γ_4 exciton series from the position of $n^A = 1$ and $n^A = 2$ lines (Fig. 1). The energy of the continuum (E_g , $n = \infty$) is equal to 3.575 eV. These energy values of the ground ($n^A = 1$) and excited ($n^A = 2$) states of excitons are in accordance with previously reported values of 3.534 and 3.665 eV, measured at 77 K [14–16].

The background dielectric constant has been estimated from the measurements reflectivity in the IR (400 cm^{-1}) and near-IR ($12,000 \text{ cm}^{-1}$) regions.

$$\varepsilon_{\rm b} = \left| \frac{1 + \sqrt{R}}{1 - \sqrt{R}} \right|^2$$

The reported value of ε_b in CuAlS₂ crystals equals 7.05 in the $(E\|c)$ polarization and 8.14 in the $(E\perp c)$ polarization far from the exciton resonances ($v=3000-4000 \text{ cm}^{-1}$) [26]. According to our data, the reflection coefficient at quantum energies lower than the energy of exciton resonances is R=0.21 for $(E\|c)$ polarization. The calculated value of $\varepsilon_b(E\|c)$ is 7.26. With this value of ε_b and Rydberg constant R=0.032 eV, the Γ_4 -excitons reduced mass equals to $\mu=(\varepsilon_b^2)R/R_H=0.11m_0$, where R_{H_2} is the Rydberg energy of the hydrogen atom (13.6 eV). The Bohr radius (a_B) of the S-state of the Γ_4 -exciton equals 0.3×10^{-6} cm.

A maximum at 3.668 eV (transversal exciton) and a minimum at 3.670 eV (longitudinal exciton) are observed in the $E\perp c$ polarization for the $n^{\rm B}=1$ Γ_5 exciton series (Fig. 1). The longitudinal-transversal splitting of the Γ_5 exciton equals

Fig. 1. Optical reflectivity spectra of CuAlS₂ crystals. The dot-line is the result of calculation of the reflectivity contour of the n=1 line of the Γ_4 exciton taking into account the spatial dispersion, i.e. limited value of the exciton mass *M*, and the boundary conditions.

2.0 meV. The $n^{\rm B}$ =2 excited exciton state is observed at 3.687 eV. The binding energy of the Γ_5 exciton equals 25 meV, and the energy of the continuum equals 3.693 eV. The C-exciton is observed at 3.813 eV($n^{\rm C}$ =1) in the same polarization. A band at 4.39 eV was observed at 77 K in the energy interval of 3.6–4.98 eV. Since no other lines were observed between the 3.665 and 4.39 eV at 77 K, the 4.39 eV band has been associated with C-exciton series [16]. As mentioned above, a line at 3.813 eV is observed in the reflectivity spectrum (Fig. 1). Taking into account these data and the exciton spectra of CuGaS₂ crystals [23–29], we assume that the 3.813 eV line is related to the ground state of the C-exciton.

For the B-exciton series, the reflection coefficient measured in the $(E\perp c)$ polarization equals 21% at 3.6 eV, and the dielectric constant $\varepsilon_{\rm b}(E\perp c)=7.2$. The calculated Γ_5 -exciton reduced mass equals $0.09m_0$ with the exciton binding energy of 25 meV. One should note that the values of $\varepsilon_{\rm b}(E\parallel c)$ and $\varepsilon_{\rm b}(E\perp c)$ are very close to each other in the region of exciton resonances, in contrast to a bigger difference observed far from the exciton resonances (ν =3000–4000 cm⁻¹) [26]. This is because the exciton resonances are close to the optical isotropic wavelength [30].

A weak luminescence is observed at 200 K in CuAlS₂ crystals under the excitation by the 325 nm line of a He–Cd laser. The luminescence intensifies with decreasing temperature to 100 K, and further to 10 K (Fig. 2). A broad photoluminescence band is observed at 10 K around 3 eV, along with two narrow bands around 3.3 eV and a band at 3.54 eV. The band at 3.54 eV is assumed to be related to the recombination of Γ_4 exciton polaritons, while the narrow lines are due to the recombination of donor–acceptor pairs (DAP) (Fig. 2).

Fig. 2. The luminescence spectra of CuAlS₂ crystals excited by the 325 nm line of a He-Cd laser measured at different temperatures.

Fig. 3. Band structure at the Γ point showing the transition from zincblende (T_d) to chalcopyrite (D_{2d}) structure for the CuAlS₂.

Download English Version:

https://daneshyari.com/en/article/1812527

Download Persian Version:

https://daneshyari.com/article/1812527

Daneshyari.com