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a b s t r a c t

If the energy bands of a phononic crystal are calculated by the finite difference time domain (FDTD)

method combined with the fast Fourier transform (FFT), good estimation of the eigenfrequencies can

only be ensured by the postprocessing of sufficiently long time series generated by a large number of

FDTD iterations. In this paper, a postprocessing method based on the high-resolution spectral

estimation via the Yule–Walker method is proposed to overcome this difficulty. Numerical simulation

results for three-dimensional acoustic and two-dimensional elastic systems show that, compared with

the classic FFT-based postprocessing method, the proposed method can give much better estimation of

the eigenfrequencies when the FDTD is run with relatively few iterations.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Phononic crystals (PCs) [1] are a kind of composite materials
which are formed by periodic variation of the acoustic properties
(i.e., mass density and elastic moduli) of the materials. The most
fundamental and attractive property of PCs is the possibility of
having complete band gaps, the frequency intervals where the
propagation of acoustic waves (AWs) or elastic waves (EWs) is
fully forbidden in all directions. Therefore, the theoretical study of
PCs is focused on the energy band calculation. The numerical
methods developed for phononic energy band calculation include
the plane wave expansion (PWE) method [2,3], multiple scatter-
ing theory (MST) [4,5], the wavelet method [6,7], the finite
difference time domain (FDTD) method [8–15] and the finite
element method (FEM) [16,17], etc. Among them, the FDTD
method has some noticeable advantages, such as its ability to deal
with solid/liquid systems [8–11], its suitability to tackle arbi-
trarily shaped scatterers [12,13] , its good convergence property
[8,14] and its easy and efficient parallel implementation [14].

Unlike the frequency domain methods, the FDTD calculation is
performed by iterations in the time domain directly, and thus
such high-complexity operations as the inversion of matrices can
be avoided. However, to obtain the energy bands of a PC by using
the FDTD method, a postprocessing method must be applied to
the FDTD time series (FDTD-TS), i.e. the discrete time series of one

field variable on an observing point computed by FDTD at each
iteration. The postprocessing method is based on a spectral
analysis algorithm which the fast Fourier transform (FFT) usually
serves as for its efficiency and robustness. But the frequency
estimation accuracy of FFT is limited by its frequency resolution
which is given by

Df ¼
1

NDt
, ð1Þ

where N is the length of the considered time series; and Dt is the
time step. Moreover, to ensure the numerical stability [19] of
FDTD iterations, the FDTD-TS is so oversampled that its time step
is far less than the time interval in which the wave transmits
through a unit cell of the PC. Thus, in order to improve the
accuracy of the FFT-based postprocessing, a large number of FDTD
iterations are often needed to generate sufficiently long FDTD-TS.
For example, the numbers of FDTD iterations are at least 100,000
in the simulations reported in [8] and [14]. However, when the
computation load of each FDTD iteration is relatively big, much
computation time is needed to run so many iterations. A big
computation load may occur in the simulations of three-
dimensional (3D) systems or systems with high wave impedance
ratios between scatterers and the host. In the latter case, the big
computation load is caused by a dense spatial mesh which is used
for good convergence of the results.

Improvement of the frequency resolution of the spectral
estimation with relatively short time series is an intensely
discussed topic in modern signal processing. And the high-
resolution spectral estimation (HRSE) methods [18] based on
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parametric modeling have attracted the most attention among
others. But the efficiency of the HRSE methods is often relatively
low if compared with the classic algorithm FFT. Even so, the HRSE
methods can still be considered to improve the performance of
the spectral analysis of relatively short FDTD-TS, under the
precondition that

TFDTDcTPost, ð2Þ

where TFDTD is the time spent on all of the FDTD iterations; and
TPost is the time spent on the postprocessing. The combination of
the FDTD and HRSE has been receiving a certain degree of
attention in the field of computational electromagnetic [19–22].
In the simulations of high-Q-valued electromagnetic devices, the
field distribution cannot become stable until many FDTD itera-
tions are run, but the HRSE methods can reduce the number of
iterations by estimating the frequency response of the devices
accurately with relatively short FDTD-TS. In this paper, a
postprocessing method based on HRSE via the Yule–Walker
(YW) method [18] for FDTD calculation of phononic energy bands
is proposed by the authors. The aim is to reduce the number of
FDTD iterations by estimating the eigenfrequencies of PCs
accurately with relatively short FDTD-TS, under the circumstance
of 3D systems or systems with high acoustic impedance ratios. For
these systems, a big computation load of each FDTD iteration is
necessary and thus the precondition (2) is satisfied.

2. General idea of FDTD calculation of phononic energy bands

The equations for a linear AW in fluids and a linear EW in
solids are, respectively, as follows:

AW equations

@pðr,tÞ

@t
¼�

1

kðrÞrvðr,tÞ, ð3Þ

@vðr,tÞ

@t
¼�

1

rðrÞ
rpðr,tÞ: ð4Þ

EW equations

rðrÞ @vðr,tÞ

@t
¼rhðr,tÞ, ð5Þ

@hðr,tÞ

@t
¼CðrÞ : rvðr,tÞ: ð6Þ

In Eqs. (3)–(6), p is the acoustic pressure; v is the velocity vector;
r is density; and k is compressibility. In Eqs. (5) and (6), h and C
are the stress and elasticity tensors, respectively. For an isotropic
medium we have Cijkl¼ldijdkl+m(dikdjl+dildjk), where Cijkl denotes
the components of the tensor C ; l and m are Lamé constants.
In Eq. (6) the symbol ‘‘:’’ denotes the operation of double dot-
product. Based on the Bloch theorem, the wave fields in a periodic
medium should take the following form:

wðr,tÞ ¼Wðr,tÞejkr, ð7Þ

where j¼
ffiffiffiffiffiffiffi
�1
p

, k is the Bloch wave vector; w denotes an arbitrary
field variable (p, v or h) in Eqs. (3)–(6); and W is the spatial
periodic function with the same periodicity as the crystal lattice.

The FDTD methods used in this paper are based on the AW
Eqs. (3), (4) or the EW Eqs. (5), (6) and the Bloch boundary
condition (7). To obtain the discretized forms (i.e. difference
equations) of the AW or EW equations, the components of the
field variables are sampled at integral or half-integral spatial grid-
points and time steps in a staggered manner; and the derivatives
of the field variables to spatial coordinate and time are

approximated by the second-order center difference. For the
details of the discretization process, we refer to [8,14] or [15]. For
band structure calculation of perfect PCs, the calculation area of
the FDTD is the unit cell. For any given Bloch wave vector k, the
obtained difference equations are solved by iterations in the time
domain after a certain initial condition (i.e. the excitation source)
is set at the beginning. The FDTD-TS is recorded on each of the
observing points which are randomly selected beforehand.

In the postprocessing method, FFT is usually applied to the
FDTD-TS corresponding to each observing point to obtain the
power spectrum (i.e. the square of the magnitude of the frequency
spectrum). Then the obtained power spectra are averaged over all
the observing points. The peaks in the averaged power spectrum
are identified as the eigenfrequencies of the PC. By using the
averaged power spectrum instead of a single power spectrum
corresponding to only one observing point, the estimation
accuracy of the eigenfrequencies can be improved and the missing
of the eigenfrequencies caused by the accidental coincidence of
the nodal points of the eigenfunctions with the observing points
can be avoided. The commonly used algorithms of detecting peaks
from a spectrum include the second-order derivative method and
the wavelet method [23]. The simplest second-order derivative
method is suitable for use in the case of a high signal-to-noise
ratio (SNR). Because the noise in FDTD-TS (mainly induced by
digital quantization) can almost be neglected, the second-order
derivative method is used to detect peaks from the averaged
spectrum of the FDTD-TS in this paper.

3. Postprocessing method based on HRSE

The proposed postprocessing method includes two main steps:
preprocessing of FDTD-TS and power spectrum estimation. The
details about the two main steps will be given in Sections 3.1 and
3.2, respectively. The preprocessing step is further subdivided into
three minor steps: filtering, decimation and normalization. The
aim of the preprocessing is to improve the performance of
the subsequent spectrum estimation. A summary of the complete
method will be given in Section 3.3.

3.1. Preprocessing of FDTD-TS

For the energy band diagram of a PC, we are usually more
concerned about the part where the normalized frequency (O) is
less than a certain value (Omax). In this paper, the normalized
frequency is defined as O¼ fa/cB, where f is the frequency; a is the
lattice constant; and cB is the transverse or longitudinal wave
velocity of the host material. Compared with Omax which is
generally less than 3, the FDTD-TS is a highly oversampled time
series. Filtering and decimation (FD) are the commonly used
operations in the frequency-zooming techniques [24] and the
narrow-band high-resolution analysis [25,26] of signals. In the
papers [19–22] in computational electromagnetics cited in
the introduction, the FD operations were all used to preprocess
the FDTD-TS. After the FD operations, the length of the over-
sampled time series reduces significantly without loss of
frequency resolution. The improvements of the performance of
the spectrum estimation caused by the FD operations include:
improvement of the frequency resolution, decreasing of the
output noise and reduction of the computation load [25].
In the filtering operation, a low-pass filter with the normalized
frequency band [0, Omax] can be used because the maximum
normalized frequency we still show interest in is Omax. According
to the Nyquist sampling theorem [24], the sampling frequency
used in the following decimation operation should be at least
two times the maximum frequency of the filtered FDTD-TS.

X.-X. Su et al. / Physica B 405 (2010) 2444–2449 2445



Download	English	Version:

https://daneshyari.com/en/article/1812602

Download	Persian	Version:

https://daneshyari.com/article/1812602

Daneshyari.com

https://daneshyari.com/en/article/1812602
https://daneshyari.com/article/1812602
https://daneshyari.com/

