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a b s t r a c t

The Galitskii–Migdal–Feynman (GMF) formalism is applied to spin-polarized atomic deuterium (kD).

The effective scattering length is calculated from the GMF T-matrix, which is essentially the effective

scattering amplitude dependent on the medium. It is found that the S-wave effective scattering length

for kD2 and kD3 varies discontinuously from negative to positive values at some critical density. This

indicates a crossover from a dimer-less regime to a regime with dimers. In addition, it is confirmed that

kD1 remains a gas down to zero Kelvin. Finally, the binding energy of the weakly bound dimers in both

species kD2 and kD3 is computed. For completeness as well as for comparison purposes, the scattering

length in the free-scattering limit is also calculated and it is found to be in a good agreement with

previous calculations.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Spin-polarized atomic deuterium kD is a composite Fermi
system with nuclear spin I ¼ 1. Therefore, kD should exhibit three
possible spin states: IZ ¼ 1, 0, �1. There are three species of kD:
kD1, kD2, and kD3 [1–3]. The simplest, kD1, has only one nuclear
spin-state occupied, the other two being empty. In kD2, two
nuclear spin-states are equally occupied and the third is empty.
Finally, kD3 involves all three nuclear spin states, assumed to be
equally occupied.

kD is a relatively weakly interacting neutral many-fermionic
system. This makes it (spin-polarized atomic deuterium kD) ideal
for investigating the range of validity of many-body perturbation
theories, such as the Galitskii–Migdal–Feynman (GMF) formalism
which is being applied in this work. kD has many interesting
properties at high densities [3,4]. It forms a self-bound liquid at a
density of order 10�3 Å�3. The purpose of this work is to test the
validity of the GMF theory for this system at high densities, and
compare our results to those calculated at the same densities by
different approaches.

Microscopically, there are two main tracks for studying this
system. The first is the variational track, including Monte Carlo
simulation [4]. Using this method, the ground-state energy of kD3

has been found to be negative, implying that this system remains
liquid at zero temperature and zero external pressure. The lowest-
order constrained variational method has also been used to
calculate the ground-state energy E [3], with the result that E

(kD1)4E(kD2)4E(kD3). The second track is the perturbative,
including the Hartree–Fock approximation [2]. In Ref. [2], the
T-matrix is calculated in the Hartree–Fock limit, the input single-
particle energy spectrum being �lðp;oÞ ¼ p2=2mþ Slðp;oÞ,
where Slðp;oÞ is the self-energy; l, p and o are the spin,
momentum and energy of the particle, respectively. This
approximation has been invoked to see how well Green-
function methods can be implemented in a moderately dense
Fermi liquid. We have recently used the so-called static
fluctuation approximation [5] to study the thermodynamic
properties of kD.

kD is expected to exhibit properties such as Cooper pairing and
superfluidity [6]. This system has the special advantage that the
pair potential is known to great accuracy [7]. The pairwise D–D
interactions are predominantly of the triplet-potential type. The
systems kD2 and kD3 form self-bound liquids when compressed
to densities around rE4�10�3 Å�3 at sufficiently low tempera-
tures. The equilibrium densities for kD2 and kD3 are in the range
0.0035–0.004 Å�3 [3]. On the other hand, kD1 remains gaseous
down to the lowest attainable temperatures. In this paper, a wide
range of densities has been used from the free-scattering limit
to a density high enough to observe various quantum effects
[1–4,6–9].
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In kD, all electrons are aligned antiparallel to the applied
magnetic field and are fully polarized in fields of order 8–10 T. In
this case the system is stable against recombination to the
molecular state [6]. P-wave pairing has been found in kD1 at
extremely low temperatures [9]; whereas in kD2 and kD3 S-wave
pairing occurs. Experimentally, the highest density attained in kD
has been �10�10 Å�3 [10].

In this paper we shall apply the GMF formalism [11,12] to spin-
polarized atomic deuterium kD to calculate the effective S-wave
scattering length for kD2 and kD3 and the effective P-wave
scattering length for kD1. The GMF formalism will be used to
calculate the effective phase shifts which, in turn, are used to
evaluate the effective, density-dependent scattering lengths for
the three species of kD. These scattering lengths turn out to be
very useful in analyzing the critical behavior of these systems. In
addition, accurate calculations of the effective S-wave scattering
lengths are important in studying elastic collisions and, therefore,
evaporative cooling rates [13–15].

The basic quantity in this formalism is the T-matrix whose
instability is an indication of the formation of fermion pairs. This
matrix is very rich in physical content. First, it is an effective
kD�kD interaction in momentum space taking into account the
medium. Secondly, it is a generalized amplitude in the sense that,
although we still have a two-body problem (an independent-pair
model), it does incorporate the many-body medium through a
Pauli exclusion operator and an energy denominator which
includes a potential well reflecting the presence of all other
particles. This idea is, of course, commonplace in the Hartree–Fock
type of many-body theories [2], including the present formalism.
Finally, the notion of multiple scattering enters into the formalism
in a very fundamental way. In fact, the T-matrix can be viewed as a
Lippmann–Schwinger T-matrix ‘dressed up’ by the medium.

The GMF t-matrix includes hole–hole scattering inside the
Fermi-sea as well as particle–particle scattering outside the sea. In
this work, the input single-particle energy spectrum has been
approximated by the free-particle energy �ðkÞ ¼ _2k2=2m. The
GMF formalism has been recently applied to both spin-polarized
and normal 3He–He II mixtures [16,17]. It has been concluded that
hole–hole scattering plays a crucial role in any possible
fermion–fermion pairing in these systems.

The rest of the paper is organized as follows. Section 2 contains
a brief account of the GMF formalism for spin-polarized atomic
deuterium, since this theory is well-described elsewhere [12]. The
results are presented and discussed in Section 3. Finally, in Section
4, the paper closes with some concluding remarks.

2. GMF formalism for spin-polarized deuterium

In this section we shall present our formalism briefly—just for
reference purposes and for defining the quantities involved. The
GMF T-matrix is given for a neutral Fermi system by [12]

Tðp;p0; s;PÞ ¼ uðjp� p0jÞ þ ð2pÞ�3
Z

dk uðjp� kjÞ

� g0ðk; sÞQ ðk;P;bÞ � gþ0 ðk; sÞQ ðk;P;bÞ
h i

Tðk;p0; s;PÞ.

(1)

Here p and p0 are the relative incoming and outgoing momenta;
the parameter s is the total energy of the interacting pair in the
center-of-mass frame and is given by

s � 2mD 2P0 �
P2

mD

 !
, (2)

P0 being the total energy of the pair and P2 the energy carried by
the center of mass; mD is the effective reduced mass of the

interacting pair. Throughout our calculations a natural system of
units is used, such that _ ¼ 1 ¼ 2mD, where mD is the D atomic
mass, the conversion factor being _2=2mD ¼ 12:043 K Å�2. In fully
spin-polarized Fermi systems, where the fixed spin polarization
prevents spin fluctuations, the enhancement of m�D is small; so
that m�D � mD [18]. The operator u � ð2mD=_

2
ÞV � 1=2V, where V

is the Fourier transform of a static central two-body potential. We
have used three triplet-state potentials: Morse-type [7], Silvera
[20] and Born–Oppenheimer [21]. Using our system of units, we
have

s ¼ P0 � P2. (3)

The operator Q ðQ Þ is the product of particle–particle (hole–hole)
occupation probabilities. In momentum space, the hole occupation
probability is just the Fermi–Dirac distribution, which reduces to
the unit step function at zero temperature. When subtracted from
unity, this yields the particle-occupation probability. Q ðQ Þ is equal
to one if both particles (holes) are outside (inside) the Fermi-sea.
The angle-averaged functions Q and Q are given by

Q ðk;bÞ ¼
1

expð�bðk2
� k2

F ÞÞ þ 1
�

1

expð�bðk2
� k2

F ÞÞ þ 1
, (4)

Q ðk;bÞ ¼
1

expðbðk2
� k2

F ÞÞ þ 1
�

1

expðbðk2
� k2

F ÞÞ þ 1
, (5)

kF being the Fermi momentum for fully spin-polarized atomic
deuterium and is given by

kF ¼
6p2r

v

� �1=3

where n is the spin degeneracy: n ¼ 1, 2 and 3 for kD1, kD2 and
kD3, respectively.

The free two-body Green’s function g0(s) is defined as

g0ð k
!
; sÞ �

1

k2
� s� iZ

. (6)

The system of interacting real particles is described in terms of
weakly interacting quasiparticles; this justifies the use of free
Green’s functions. The quantity Z is a positive infinitesimal in the
scattering region and zero otherwise.

The Fourier–Bessel transform of the kD�kD interatomic
potential was calculated using a program originally constructed
by Ghassib and coworkers [19] for interhelium potentials.

The effective phase shifts can be determined by parametrizing the
on-energy-shell T-matrix, T‘ðp; p; s; P;bÞ � T‘ðp; P;bÞ as follows [12]:

T‘ðp; P;bÞ ¼ �
4p
p

expðidE
‘ ðp; P;bÞÞ sinðdE

‘ ðp; P;bÞÞ
Q ðp; P;bÞ þ Q ðp; P;bÞ

, (7)

so that

tanðdE
‘ ðp; P;bÞÞ �

Im T‘ðp; P;bÞ
Re T‘ðp; P;bÞ

, (8)

Im T‘ðp; P;bÞ and Re T‘ðp; P;bÞ denoting, respectively, the imagin-
ary and real parts of T‘ðp; P;bÞ.

To calculate the real and imaginary parts of the T-matrix, it is
convenient to define a real K-matrix:

K‘ðp; p
0; s; P;bÞ � u‘ðp; p

0Þ þ
1

2p2

Z
k2 dk u‘ðp; kÞ

�
Q ðk; P; kFÞ

k2
� s

�
Q ðk; P; kFÞ

k2
� s

" #
K‘ðk; p

0; s; PÞ. (9)

Finally, the real and imaginary parts of the T-matrix are

Re T‘ðp; p
0; s; P;bÞ ¼ K‘ðp; p

0; s; P;bÞ
� A‘ðs; P;bÞB‘ðp; p0; s; P;bÞ, (10)
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