Contents lists available at ScienceDirect

Physica B

journal homepage: www.elsevier.com/locate/physb

EPR, ESE and pulsed ENDOR study of the nitrogen donor pairs on quasi-cubic lattice sites in 6H SiC

D.V. Savchenko^{a,b}, E.N. Kalabukhova^{b,*}, S.N. Lukin^b, E.N. Mokhov^c, J. Hoentsch^a, A. Pöppl^a

^a Fakultät für Physik und Geowissenschaften, Institut für Experimentalphysik II, Universität Leipzig, Linnéstrasse 5, Leipzig D-04103, Germany

^b Institute of Semiconductor Physics, NASU, Pr. Nauki 45, Kiev 03028, Ukraine

^c A.F. Ioffe Physiko-Technical Institute RAS, Politekhnicheskaya 26, St. Petersburg 194021, Russia

ARTICLE INFO

Keywords: EPR ESE Pulse ENDOR 6H-SiC

ABSTRACT

D-band EPR, X-band FS ESE and pulsed ENDOR studies of the additional nitrogen (N) related centers observed in highly compensated n-type 6H-SiC wafers are presented. The D-band EPR and X-band FS ESE spectrum consists of the ¹⁴N hyperfine (hf) triplet lines of the N donors incorporated at the two quasi-cubic (N_{c1}, N_{c2}) sites with the intensity ratio of $I_{Nc1}/I_{Nc2} = 0.7$ and three additional triplet lines. X-band pulsed ENDOR spectra have shown intense ¹⁴N ENDOR signals of N_{c1}, N_{c2} centers and new ¹⁴N lines due to the N related centers N₁, N₂, N₃ with the isotropic hf splitting: 21.04, 26.43, 29.77 MHz, respectively. It was found that the *g*-tensors of the N₂ and N₃ triplet lines coincide with those of N on quasi-cubic N_{c2} site. The *g*-tensor of the third N₁ triplet lines corresponds to the average value of the N_{c1} and N_{c2} spectrum: $g(N_1) \approx \frac{1}{2}[g(N_{c1}) + g(N_{c2})]$. It was suggested that N₁ center with $A_{iso} = 21.04$ MHz is due to the spin coupling between N on two quasi-cubic N_{c1} and N_{c2} sites while two others are tentatively attributed to the N pairs formed between N atoms on one quasi-cubic N_{c2} site.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The previous X-band electron paramagnetic resonance (EPR) investigations of n-type 6H-SiC showed that besides the well known triplet lines due to nitrogen (N) at the hexagonal ($N_{\rm b}$) and quasi-cubic carbon sites (N_{c1}, N_{c2}) two additional lines of comparatively low intensity lying exactly at half the hyperfine (hf) splitting of the N_{c2} spectrum were observed in heavily doped (>10¹⁷ cm⁻³) samples. These lines have been assumed to arise from N pairs and triads [1-3]. Recent high frequency EPR, fieldsweep electron spin echo (FS ESE) and pulsed electron nuclear double resonance (ENDOR) studies of the n-type 4H SiC and 6H SiC wafers with low nitrogen (N) concentration ($<10^{17}$ cm⁻³) showed besides a triplet due to N_h, additional N triplet lines labelled N_x with g-tensor corresponding to the average value of the N_c and N_h spectrum: $g(N_x) \approx \frac{1}{2}[g(N_c) + g(N_h)]$ in 4H SiC [4] and $g(N_x) \approx \frac{1}{2}[g(N_{c2}) + g(N_h)]$ in 6H SiC [5,6]. It was found that the N_x triplet lines have half of the hf splitting of the N_c center in 4H and N_{c2} in 6H SiC. Judging from experimental EPR parameters and those calculated from the first principles, the N_x triplet lines were attributed to the distant N donor N_cSi_cN_h pairs on inequivalent lattice sites which are coupled to S = 1 centers with very small zero-field splitting [7]. This conclusion was also supported by

nutation frequency experiments from which the spin state of the N related center N_x in 4H-SiC was determined as S = 1 [8].

In this work we used D-band EPR, X-band FS ESE and pulsed ENDOR to study the highly compensated n-type 6H-SiC wafers with $(N_D-N_A) \approx 10^{16} \text{ cm}^{-3}$ to verify whether the N donor pairs occur between two quasi-cubic sites in the case when the N_h were ionized and the numbers of the paramagnetic N atoms at the two quasi-cubic positions became already very different. By analogy with N_x center model, Fig. 1 shows four among six possible configurations of the distant pairs like (N_{ci}Si_{ci}N_{ci}, *i* = 1, 2) which could occur between N atoms on two quasi-cubic lattice sites in 6H SiC.

2. Experimental

A series of highly compensated n-type 6H-SiC wafers grown by modified Lely method with donor concentration of about $(N_D-N_A) \approx 10^{16} \text{ cm}^{-3}$ were investigated by two pulse FS ESE, ESE nutation, and pulsed ENDOR experiments on an X-band Bruker ELEXYS E580 spectrometer. For all pulse experiments selective microwave (mw) pulses with pulse lengths of $t_{\pi/2} = 0.1 \,\mu$ s, $t_{\pi} = 0.2 \,\mu$ s and a pulse delay $\tau = 1 \,\mu$ s were used. The nutation experiments were done using the pulse sequence $p_n - t - \pi/2 - \tau - \pi - \tau$ - echo with t = 400 ns where the pulse length of the first pulse p_n was incremented in steps of 16 ns. Pulsed ENDOR measurements were performed using a modified Davies ENDOR pulse

^{*} Corresponding author. Tel.: +380442360971; fax: +380444891704. E-mail address: katia@i.kiev.ua (E.N. Kalabukhova).

^{0921-4526/\$ -} see front matter \circledcirc 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.physb.2009.08.119

Fig. 1. Possible configurations of the distant donor pairs like $(N_{ci}Si_{ci}N_{ci})$ on quasicubic lattice sites in 6H-SiC shown in the $(1\ 1\ \overline{2}\ 0)$ plane.

sequence to enhance the sensitivity and nuclear spin relaxation [9]. In this pulse sequence an additional radio frequency (rf) pulse applied after echo detection helps the total spin system to recover to a thermal equilibrium in a much shorter time limited only by T_{1e} instead of T_{1n} as in case of the Davies ENDOR experiment. The length of the two rf pulses employed in the modified Davies ENDOR was $t_{\pi/2} = 36 \,\mu$ s. EPR measurements at 140 GHz were performed on a D-band EPR setup at 4.2 K.

3. Results

Fig. 2a shows the D-band EPR spectrum observed in n-type 6H-SiC wafers with donor concentration of about $(N_D-N_A) \approx 10^{16} \text{ cm}^{-3}$ for **B**||**c**. The EPR spectrum displays intense hf triplet lines of ¹⁴N on the two quasi-cubic (N_{c1}, N_{c2}) sites. Because of high compensation of the sample the single EPR line with unresolved hf splitting due to the N_h with $g_{||} = 2.0048(2)$ was not observed in EPR spectrum. The reason is that N_h has a substantially more shallow energy level ($E_i = 81.04 \text{ meV}$) than N_{c1} , N_{c2} and as a result its level is not occupied in compensated samples and the EPR spectrum of the N donors on hexagonal (h) sites was not detectable [10]. The intensity ratio between N triplet lines due to the quasi-cubic sites was found to be about $I_{Nc1}/I_{Nc2} = 0.7$ indicating that the N_{c2} with the deeper energy level ($E_i = 142.4 \text{ meV}$) is mostly occupied.

As seen in Fig. 2a some additional lines are observed in the D-band EPR spectrum. But even at high frequency these additional lines are overlapping with the two N_{c1}, N_{c2} triplet lines. A deconvolution of the experimental D-band EPR spectra was performed by using Easy-Spin-3.0.0 toolbox program [11]. The EPR spectrum of n-type 6H-SiC is fitted with the five triplets lines. Two of them belong to the N_{c1} and N_{c2} and three other triplets, labelled N₁, N₂, N₃, were likewise attributed to N related centers. It should be noted that due to low concentration of donors (10¹⁶ cm⁻³), the D-band EPR spectrum was recorded in the saturation conditions. Therefore the agreement between experimental and simulated spectrum is not so excellent.

Fig. 2b shows an X-band FS ESE spectrum in highly compensated n-type 6H-SiC measured at 6K for **B**||*c*. The spectrum displays a superposition of two N triplets corresponding to the N donor occupying N_{c1} , N_{c2} lattice sites. The high intensity of the central line of N_{c1} , N_{c2} triplets indicates that it coincides with

Fig. 2. D-band EPR (a) and X-band FS ESE (b) spectrum measured on highly compensated n-type 6H-SiC wafers with $(N_D-N_A) \approx 10^{16} \text{ cm}^{-3}$ measured for **B**||**c** at T = 4.2 K (a) and **B** \perp **c** at T = 6 K (b). Solid lines—experimental spectra, lines with symbols—simulated spectra, for parameters see Table 1.

Table 1

The *g*-values and hf splitting for N donors obtained in highly compensated n-type 6H-SiC with $(N_D-N_A) \approx 10^{16} \text{ cm}^{-3}$ from EPR. FS ESE and pulsed ENDOR data.

Center	N _{c2}	N _{c1}	N_1	N ₂	N ₃
$egin{aligned} g_{\parallel} \ g_{\perp} \ A_{\parallel} (\mathrm{MHz}) \ A_{\perp} (\mathrm{MHz}) \end{aligned}$	2.0037(2)	2.0040(2)	2.0039(2)	2.0038(2)	2.0037(2)
	2.0030(2)	2.0026(2)	2.0030(2)	2.0030(2)	2.0030(2)
	33.32	33.6	21.04	26.43	29.77
	33.32	33.6	21.04	26.43	29.77

the central line of the three N₁, N₂, N₃ triplet subspectra. The two other lines of these triplets are partially resolved between the triplet lines of N_{c1} and N_{c2}. The analysis of the angular dependences of the D-band EPR and X-band FS ESE spectra of the N donors observed in highly compensated n-type 6H-SiC yielded the spin-Hamiltonian parameters given in Table 1. The hf splitting for N₁, N₂, N₃ were found to be isotropic and smaller than those for N_{c1} and N_{c2}. But in contrast to the N_x center, having exactly half of the hf splitting of the N_{c2} in low compensated Download English Version:

https://daneshyari.com/en/article/1813355

Download Persian Version:

https://daneshyari.com/article/1813355

Daneshyari.com