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We study suppression of superconductivity by disorder in d-wave superconductors, and predict the

existence of (at least) two sequential low-temperature transitions as a function of increasing disorder: a

d-wave to s-wave, and then an s-wave to metal transition. This is a universal property of the system

which is independent of the sign of the interaction constant in the s-channel.
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Generally the order parameter in superconductors is a function
of two coordinates and two spin indices. Classification of possible
superconducting phases in crystalline materials was done in Refs.
[1,2]. A majority of low-Tc crystalline superconductors have a
singlet order parameter with s-wave symmetry. It does not change
its sign under rotation, and in the isotropic case it can be
approximated by a complex number Ds

ðrÞ ¼ Dðr; rÞ. However, over
the last decades a number of superconductors have been
discovered in which the order parameter changes sign under
rotation. A notable example is HTC superconductors, where in the
absence of disorder the order parameter has singlet d-wave
symmetry [3,4]: Dðr� r0Þ changes sign under rotation by p=2, and
consequently Dðr; rÞ ¼ 0. This means that the Fourier transform
DðkÞ changes its sign under a p=2 rotation as well, as is shown
schematically by the rosettes in Fig. 1. Since the sign of DðkÞ in
crystalline d-wave superconductors depends on the direction of
the wave vector k, they are much more sensitive to disorder than
s-wave superconductors: at temperature T ¼ 0, d-wave super-
conductivity gets destroyed when the electron mean free path l is
of the order of the zero temperature coherence length in a pure
superconductor, l�l0 ¼ 1:78xob1=kF . Here kF is the Fermi wave-
length. This is in contrast with the case of s-wave super-
conductors, where according to the Anderson theorem the
superconductivity is destroyed at much higher level of disorder,
when l�1=kF . The fate of the d-wave superconductors at lox0

depends on the sign of the interaction constant ls in the s-wave
channel. If the interaction ls in the s-wave channel is attractive,
but weaker than the attraction in the d-wave channel jlsjojlDj,
then at weakdisorder, (l4x0), the superconducting order para-
meter has d-wave symmetry, while at lox0 the disorder destroys
the d-wave superconductivity and the system undergoes a phase

transition into an s-wave superconducting state. (See, for
example, Ref. [5].)

In this article we consider a more interesting case, in which the
interaction in the s-channel is repulsive at strong enough disorder
1=kF5l5x0 the system is in normal state. We predict at least two
low-temperature phase transitions: a d-wave to s-wave, and then
an s-wave to normal metal transition. Qualitatively the phase
diagram of disordered d-wave superconductors is shown in Fig. 1.
Let us first discuss the definition of s- and d-symmetries in bulk
disordered systems. Before averaging over random realizations of
disorder, the system does not possess any particular spacial
symmetry at all. However, in bulk samples, the symmetry is
restored upon configuration averaging. We can think of several
different definitions of the global symmetry of the order
parameter: (a) an operational definition is provided by the result
of a phase sensitive experiment, such as the corner SQUID
experiment, for example, [3,4]. (b) The quantity Dðr; r0Þ can be
characterized as having d-wave or s-wave symmetry. Here the
over-line stands for the averaging over the sample volume. (c) A
globally s-wave component of the order parameter can be defined
in terms of the local s-component of the anomalous Green
function Fðr ¼ r0Þ �FðsÞðrÞ. If we define P� to be the volume
fraction of a sample where FðsÞðrÞ has a positive or a negative sign,
respectively, then the system has an s-wave component if
ðPþ � P�Þa0. These definitions may be not equivalent under all
circumstances. However, for the most part, we will deal with the
interval of parameters in which all these definitions are
approximately interchangeable.

It is important to realize that it is inevitable near criticality to
have a situation in which the local pairing in disordered super-
conductors is ‘‘d-wave-like’’ and yet the global superconductivity
has s-wave symmetry. The d-wave to s-wave transition can be
understood at the mean field level. The electron mean free path is
an average characteristic of disorder. Let us introduce a ‘‘local’’
value of the mean free path lðrÞ averaged over a size of order x0. In
the region of parameters where d-wave superconductivity is
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sufficiently suppressed by disorder, the spatial dependence of the
order parameter can be visualized as a system of superconducting
puddles with anomalously large values of the order parameter,
which are connected by Joshepson links through non-super-
conducting metal. The superconductivity inside the puddles may
be enhanced because either the electron interaction constant or
the mean free path in the puddles (or both) may be larger than
their average values.

Let us assume that the distance between the puddles is larger
than both their size and the mean free path. In this case the
system is already in a state with the ‘‘global s-wave’’ symmetry. Its
origin is illustrated qualitatively in Fig. 2, where a system of
superconducting puddles of arbitrary shape embedded into
a metal is shown. The order parameter inside the puddles has
d-wave symmetry, and the orientation of the gap nodes is
assumed to be pinned by the crystalline anisotropy. In a d-wave
superconductor, in addition to an overall phase of the order
parameter, there is an arbitrary sign associated with the internal
structure of the pair wave function. Specifically, we adopt a
uniform phase convention such that when the phase of the order
parameter fi ¼ 0, this implies Dðr; r0Þ in puddle i is real and has
its positive lobes along the y axis and its negative lobes along
the x axis.

The inter-puddle Joshepson coupling originates from the
proximity effect in the normal metal. It is characterized by the
anomalous Green function Fðr; r0Þ � Fðr; r0; t ¼ t0Þ, which is con-
nected to Dðr; r0Þ by the interaction constant. Due to the lack of
symmetry at the boundary of a puddle, an s-wave component
Fðr ¼ r0Þ ¼FðsÞðrÞa0 of the anomalous Green function is gener-
ated in the neighboring metal. At a distance from the super-
conductor-normal metal boundary larger than the elastic electron
mean free path the anomalous Green function becomes isotropic.
In other words, only the s-component Fðr ¼ r0Þ ¼FðsÞðrÞ survives.
It is this component that propagates between far separated
puddles and determines the Joshepson coupling.

The sign of FðsÞðrÞ at a normal metal-superconductor boundary
is determined by the sign of the d-wave order parameter in the
k-direction perpendicular to the boundary. Therefore, it changes
along the boundary of a puddle.

At a distance from an individual i-th puddle larger than its size
and smaller than the distance between the puddles the quantity
Fs
ðrÞ has a sign Zi ¼ �1, which depends on the shape of the i-th

puddle. This point is illustrated in Fig. 2a, where the sign of the
anomalous Green function is positive in hatch-marked areas, and
negative outside of these areas.

If the distance between puddles is larger than their size, the
sign of the Joshepson coupling energy EJos is determined by a
product ZiZj

EJos ¼
X
iaj

ZiZjJ
ðsÞ
ij cosðfi � fjÞ. (1)

Here indexes i; j label puddles, JðSÞij 40. Eq. (1) represents the Mattis
model, which is well known in the theory of spin glasses [11]. The
ground state of this model corresponds to

cosðfiÞ ¼ �Zi. (2)

Thus the distribution of cosðfiÞ between puddles looks completely
random as it is shown in Fig. 1b. However, the system is not a glass
because its ground state has a hidden symmetry. In other words if
the distances between puddles are bigger than the characteristic
size of the puddles, R, the Josephson coupling between puddles
inevitably favors globally s-wave superconductivity, even though
the order parameter on each puddle looks locally d-wave-like. It is
obvious that at a high concentration of puddles, the order
parameter in the ground state has global d-wave symmetry.
(See Fig. 2b.)

At intermediate distances, the situation is more complicated.
Areas with different signs of FðsÞðrÞ mix in a random fashion. We
argue that the most important aspects of this complex situation
can be modeled by adding to the right hand side of Eq. (1) a termX
iaj

JðdÞij cosðfi � fjÞ, (3)

where JðdÞij 40 characterizes the strength of the exchange interac-
tion between the d-wave components of the order parameter.
Typically, at small jri � rjj, JðdÞij 4JðsÞij , but at large jri � rjj the
coupling strength JðsÞij decays more slowly than JðdÞij . Here ri are
coordinates of the puddles. Thus, it is likely that in this
intermediate region the system may exhibit spin glass features
and/or coexistence of d-wave and s-wave ordering. In this article,
however, we will not further explore this fascinating but complex
aspect of this problem.

To quantify the picture presented above one has to compute
the Josephson coupling between a pair of far separated puddles.
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Fig. 1. Schematic phase diagram for the case when d-wave superconducting state

is destroyed as a function of increasing disorder strength.
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Fig. 2. A qualitative illustration of the global d-wave to s-wave transition. Solid

lines represent boundaries of d-wave superconducting puddles embedded into a

normal metal. Hatch-marked areas indicate the areas were the s-wave component

of the anomalous Green function Fs
ðr; rÞ is positive. Outside these areas Fs

ðr; rÞ is

negative. (a) The case of small puddle concentration when the system has s-wave

global symmetry. (b) The case of big puddle concentration when the system has a

global d-wave symmetry.
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