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a b s t r a c t

In this work we analyze the Tomasch effect in double barrier insulating superconducting N1ISIN2 (N:

normal metal, I: insulator and S: superconductor) junctions. From the solution of the Bogoliubov–de

Gennes equations we find that the differential conductance presents resonances when the applied

voltage changes. These resonances are originated by the formation of quasibound states in the

superconducting region and depend on the symmetry of the pair potential. We develop an analytical

model in order to find the quasibound states energies and its lifetimes. This model allows us to calculate

the voltage at which each resonance appears and the resonance widths. We calculate and analyze the

dependence of the transmission coefficients with the thickness of the superconducting layer.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

In high critical temperature superconductivity the symmetry
of the pair potential is one of the most widely studied aspects. In a
NIS junction with d-symmetry, for instance, the differential
conductance has a peak at zero voltage, called zero bias
conductance peak (ZBCP) [1–5]. In a N1ISIN2, oscillations in the
differential conductance called Tomasch effect appear [6]. An-
dreev reflections [7,8] have been used to explain the oscillations in
the differential conductance in graphene and isotropic NISIN
junctions [9,10]. Recently the Tomasch effect has been observed in
ramp-type junctions [11,12]. Complete studies on the Tomasch
effect have been carried out in anisotropic NISN junctions [13]. On
the other hand there are not theoretical model for NISIN junctions.
In this article we find the differential conductance in terms of the
applied voltage for s, dx2�y2 and dxy symmetries. We solve the
Bogoliubov–de Gennes equations (BdGE) in NISIN junctions and
we find the differential conductance from electron–electron and
electron–hole reflection coefficients. Since the oscillations in the
differential conductance are due to the formation of quasibound
states, we analyze the energy spectrum and the lifetime of
quasiparticles in these states.

2. Differential conductance

If a voltage is applied to an NS interface, it is possible to find
the differential conductance at zero temperature by using the BTK
model [14] as

GR ¼
1

GN

dIS

dV
¼

1

T
ð1þ Re2hðEÞ � Re2eðEÞÞ, (1)

where Re2hðEÞ and Re2eðEÞ are, respectively, the reflection coeffi-
cients electron–hole and electron–electron and GN is the differ-
ential conductance for an NIN junction characterized by a
transparency T as defined below.

The system under consideration is illustrated in Fig. 1, where a
superconductor is located between two normal regions N1 and N2,
in x ¼ 0 and a. We have included two insulating barriers modeled
by potentials V1ðxÞ ¼ gdðxÞ and V2ðxÞ ¼ gdðx� aÞ with dðxÞ the
Delta Dirac function and g a parameter that characterizes each
barrier, for this model we assume that the planes of CuO2 of the
superconductor are in the x2y plane.

In order to find the coefficients Re2h and Re2e we solve
the BdGE when an electron is injected from the normal N1

with E energy and replace these coefficients on Eq. (1). We
find the differential conductance for the double barrier insulat-
ing as

GR ¼
ð1þ Z2

Þ

jDj2
ðjDj2 þGþ C2

� Z2
ð1þ Z2

ÞjAþ CBj2Þ, (2)
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with

A ¼ 1� e�idjGQ � e2ikþað1� GQ Þ,

B ¼ G� e�idjQ � eiðkþ�k�ÞaGð1� GQ Þ,

C ¼ �

eiðk�þkþÞa

ð1� GQ Þ
ðGð1þ Z2

Þ � Z2Qeidj
Þ � Z2G

e2ik�a

ð1� GQ Þ
ðð1þ Z2

Þ � Z2QGeidjÞ � Z2

(3)

and

D ¼ 1þ Z2Aþ CðGþ Z2BÞ,

G ¼ E�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
� jDj2

q
; Q ¼

Gð1� eiðkþ�k�ÞaÞ

ð1� G2eiðkþ�k�ÞaÞ
,

k� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0xF �
2m

‘ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
� jDj2

qs
,

k0xF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

F � k2
y

q
and Z ¼

mg
‘ 2k0xF

. (4)

In these equations k0xF ¼ kF cos y, kF is the Fermi wave number,
Z is the insulating barrier strength, so that transparency is given
by T ¼ 1=ð1þ Z2

Þ and D is the pair potential of the superconductor
modeled as Dðk; rÞ ¼ YðxÞYðx; aÞDðk; xÞ , where k is the quasipar-
ticles wave vector and YðxÞ is the Heaveside function. For a d-
symmetry it is possible to write the pair potential
DðyÞ ¼ D0 cosð2y� 2aÞ, where a is the angle between the a axis
of the CuO2 planes and the vector normal to the interface, y is the
angle of the injected electron respect to the x axis. When a ¼ 0 we
have a dx2�y2 symmetry, DðyÞ ¼ D0 cosð2yÞ and for a ¼ p=4 we
have a dxy symmetry, DðyÞ ¼ D0 sinð2yÞ.

When Z ¼ 0 we have an NSN junction. From Eq. (2) the
differential conductance is given by

GR ¼ 1þ
Gð1� eiðkþ�k�ÞaÞ

1�G2eiðkþ�k�Þa

�����
�����
2

. (5)

Resonances for different voltage values appear in GR, as shown
in Fig. 2 for Z ¼ 0. These resonances are due to interference of the
transmitted quasiparticles at x ¼ 0 and the reflected
quasiparticles at x ¼ a and can be found from

eV ¼ ðpð2nþ 1ÞEF Þ
2
ðkFaÞ�2 cos2ðyÞ þ jDðyÞj2. (6)

The energy values in (6) agree with the values found in [13].
Fig. 2 shows the differential conductance as a function of the
applied voltage for an NISIN junction and for different values of Z.
For Z ¼ 1 and eV4D0, we find that the number of resonances is
greater for a dxy symmetry than for dx2�y2 symmetry. In addition
one resonance to zero voltage appeared for the conductance on
dxy symmetry. These differences are due to the resonant states
energy are affected by the pair potential anisotropy. For the two

considered symmetries the width of resonances diminishes as Z

increases.

3. Resonances in the differential conductance

The voltage for which the differential conductance presents
oscillations can be found from the poles in the denominators of
the transmission coefficients. For the tunnel limit ðZb0Þ this
voltage can be found from the energy spectrum of a super-
conductor film. From the solution of the BdGE the energy
spectrum for s and dx2�y2 symmetries is the same

En ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDj2 þ

‘ 2

2m

np
2a

� �2
� �

� k2
0xF

 !2
vuut , (7)

where n is a whole number. In Fig. 3a we show the resonant
energy values for GR and the energies obtained from Eq. (7). It is
seen that the resonances are caused by the formation of
quasibound states in the superconducting region.
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Fig. 1. Double barrier insulating superconducting junction N1ISIN2, the electron

injected on the junction from normal state metal N1 can be reflected as an electron,

as hole or can be transmitted as an electron or as a hole in the normal metal N2.
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Fig. 2. Differential conductance GRðE ¼ eVÞ in an NISIN junction for different

values of the insulating barrier strength Z. (a) dx2�y2 symmetry, (b) dxy symmetry.

In both cases the superconducting region width is a ¼ 15x0, where x0 is the

coherence length.
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