
The Kondo necklace model with planar anisotropy

J.J. Mendoza-Arenas, R. Franco, J. Silva-Valencia �

Departamento de Fı́sica, Universidad Nacional de Colombia, A.A. 5997 Bogotá, Colombia
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a b s t r a c t

We study the one-dimensional anisotropic Kondo necklace model at zero temperature through White’s

density matrix renormalization group technique. The ground state energy and the spin gap were

calculated as a function of the exchange parameter for two anisotropy values. We found a finite critical

point separating a Kondo singlet from an antiferromagnetic phase. The transition is highly congruent

with a Kosterlitz–Thouless form. We observed that the critical point increases with the anisotropy.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Strongly correlated electron systems are some of the most
studied systems in condensed matter physics. Important exam-
ples are the heavy fermions, which in the last years have been the
object of intense theoretical and experimental investigation. In
these kinds of materials (like intermetallic compounds containing
rare earths and actinides such as Ce, Yb and U), there are two
different types of electronic states: the s, p and d orbitals, which
correspond to conduction electrons that move through the lattice,
and the inner f orbitals, in which electrons stay at low energies.
The interaction between these electrons leads to two different
effects, which compete between them to determine the magnetic
behavior of the system. The first, known as the Kondo effect, is the
screening of the localized magnetic moments (of f electrons)
due to the conduction electrons, and generates a non-magnetic
state by creating singlets along the system. The second, called the
Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction, is an indir-
ect exchange between the spins of the localized electrons,
mediated by the conduction electrons, and tends to establish an
antiferromagnetic order.

One of the most important Hamiltonians that incorporate the
competition mentioned above is given by the Kondo lattice
model:

HKL ¼ �t
X

i;s
ðcþi;sciþ1;s þH.c.Þ þ J

X

i

Si � si, (1)

where cþi;s (ci;s) is the creation (annihilation) operator of a
conduction electron in site i, t is the hopping between nearest
neighbors and J is the antiferromagnetic coupling between the
localized spins (Si) and the spins of the conduction electrons (si).
In order to simplify the study of the magnetic behavior and keep
only the spin degrees of freedom, neglecting the charge fluctua-
tions, Doniach [1] proposed a different Hamlitonian, known as the
Kondo necklace model:

HKN ¼ t
X

i

ðsx
i sx

iþ1 þ sy
i sy

iþ1Þ þ J
X

i

Si � si. (2)

In this Hamiltonian, a nearest-neighbor XY interaction between 1
2

spins tends to emulate the propagation of the conduction
electrons. The coupling of conduction spins to localized ones is
maintained, so it is expected that the competition between the
Kondo effect and the RKKY interactions is still present. Materials
such as CeRh2Si2�xGex [2] and Ce1�xLaxAl3 [3] can be understood
on the basis of this model.

Many analyses have been made of the one-dimensional Kondo
necklace model at zero temperature. Some of them found that a
phase transition from the Kondo singlet state to the (quasi-long-
range ordered) antiferromagnetic one takes place at a finite value
of J ðJcÞ, such as the study by Doniach [1] on the basis of mean field
theory (Jc ¼ 1), or the finite size scaling [4] by Santini and Sólyom
ðJc ¼ 0:24Þ, consistent with a Kosterlitz–Thouless-like transition.
Nevertheless, most approaches support the idea that any phase
transition at finite couplings occurs (that is, the system is always
in the singlet phase), as quantum Monte Carlo simulations [5],
bosonization [6,7], density matrix renormalization group (DMRG)
[6,8] and the bond operator method within mean field theory [9].
A Kosterlitz–Thouless tendency has also been suggested with this
result [6,8].
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An anisotropy parameter in the XY interaction of (2) was first
added by Saguia et al. [10] by means of the following Hamiltonian:

HAKN ¼ t
X

i

ðsx
i sx

iþ1 þ ð1� ZÞs
y
i sy

iþ1Þ þ J
X

i

ðSi � siÞ. (3)

This model is important because real heavy fermion materials
present anisotropic features; for example, the Z ¼ 1 case is useful
to describe systems with a strong Ising character. Also, it is
interesting to study its critical behavior, because there is no
consensus among the results obtained for different approaches:
using real-space renormalization group it was determined that,
for Z40:58, there was a phase transition at a finite J, and that for
Zo0:58 the system was in the Kondo singlet phase for all non-
zero values of J [10,11]. But recent studies have obtained different
results. Using spin wave theory and a numerical Lanczos method,
it was seen that there was always a phase transition for Z40 [12],
and applying the bond-operator method for one dimension, there
was no evidence of transition at finite J for any anisotropy [13].

In the present paper, we try to clarify some aspects of the
critical behavior of the anisotropic Kondo necklace model (3),
calculating the spin gap for two Z values as a function of J (t ¼ 1
for simplicity) using the density matrix renormalization group
[14–16]. We implemented a finite system algorithm for lattices of
up to 100 sites, and kept up to 100 states. Our highest errors were
on the order of 10�9. In order to have a high degree of precision in
the gap calculation, we used as target states the ground and first
excited state of the superblock.

2. Results

In Fig. 1 the ground state energies per number of sites for Z ¼
0:2 and 1.0 are shown (for a lattice of length N ¼ 60). They
decrease monotonically as J increases, and for large values of J

they are very similar, tending to the isotropic Kondo necklace
values, for example, at J ¼ 4:0, E0=N is �3:015, �3:013 and �3:008
for Z ¼ 0, 0.2 and 1.0, respectively. At smaller J values, where the
gap has linear behavior (see below), the energies are quite
different, so the result of including the anisotropy is appreciable
even when the Kondo effect is more dominant in the system than
the RKKY interactions.

We now study the spin gap D. This analysis is important since a
finite value of the gap, which is defined as the energy difference
between the states of total spin 0 (ground state) and total spin 1
(first excited state), is characteristic of the Kondo singlet phase
and represents the needed energy to break a singlet and produce a
triplet. The quantum critical point is that at which the gap
becomes zero.

In Fig. 2 the gap is shown as a function of J for Z ¼ 1:0 in a 60
site lattice. In this case, for J40:5125 (approximately), the gap is
linear. This indicates that for this range of J, the Kondo effect
is more dominant in the system than the RKKY interactions. That
is because when the singlets are independent, the energy needed
to break one of them and create a triplet is just J, but if the singlets
are nearly independent, we obtain that the spin gap is D / J, with
the proportionality constant close to 1. In fact, we found this
constant to be 0.987. At J � 0:5125, the linear behavior of the gap
is lost, so the RKKY interactions begin to dominate the system. So
we can think of J ¼ 0:5125 as the point at which a smooth
crossover from Kondo to the RKKY regime begins.

As mentioned before, the RKKY interactions are not strong
enough to generate the phase transition to the antiferromagnetic
state in the one-dimensional Kondo necklace model (2). In
the anisotropic model (3), this is not the case. For very small J,
the gap oscillates with values smaller than 10�12 (which can be
considered as 0). In order to give an estimate of the point at which

the gap becomes 0 (the critical point Jc), we assume a
Kosterlitz–Thouless type transition, as was proposed in earlier
works for the isotropic model. In such a case, the gap takes the
following exponential form:

D ¼ A exp½�b=ðJ � JcÞ
s
�. (4)

In a Kosterlitz–Thouless transition, s is expected to be 1
2. The best

fit to the gap values of Fig. 2 was obtained with Jc ¼ 0:448 and
s ¼ �0:46 (very close to 1

2). Fixing s to this value we found, with
almost the same correlation coefficient and smaller errors than
before, Jc ¼ 0:445, which is very close to the first value. We also
got a better fit and smaller errors fixing b (for example, to 1) and
including a prefactor to the exponential of the form Jd, obtaining a
critical point close to the one already mentioned (Jc ¼ 0:4518,
d ¼ 0:50). So the latter kind of behavior could be considered to
describe the gap’s approach to zero.

Following the gap tendency found by Reyes et al. [13] for two
and three dimensions, we also fitted our gap values to a power law
of the form

D ¼ ajJ � Jcj
b, (5)

with this behavior, and giving a determined value of the quantum
critical points is a complicated task, since it is difficult to choose
the best fit. The correlation coefficients were worse than the ones
in the Kosterlitz–Thouless decay, and the errors were bigger.
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Fig. 1. Ground state energy per number of sites for Z ¼ 0:2 and 1.0. Here the lattice

size is N ¼ 60.
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Fig. 2. The spin gap D as a function of J for Z ¼ 1:0. Here the lattice size is N ¼ 60.
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