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a b s t r a c t

The magnetic properties of the one-dimensional spin-1 ferromagnetic Heisenberg model are

investigated by Green’s function method. The magnetic properties of the system are treated by the

random phase approximation for the exchange interaction term, and the Anderson–Callen approxima-

tion for the single-ion anisotropy term. The critical temperature, magnetization, and susceptibility are

found to be dependent of the anisotropies. Our results are in agreement with the other theoretical

results.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Recently, low dimensional magnetic properties of the ferro-
magnetic Heisenberg model have received considerable interest.
There are many theoretical methods which have been employed
to investigate the magnetic properties of the system, such as spin
wave theory [1,2], mean-field theory [3], Monte Carlo method [4],
renormalization group method [5,6], Green’s function method [7–
10], and so on.

From the theoretical standpoint, it is known that the spin wave
theory, mean-field theory, and thermodynamic perturbation
theory are only applied to the low temperature, critical tempera-
ture, and above critical temperature areas, respectively. The
Monte Carlo method and renormalization group method are also
good tools to study the ferromagnetic Heisenberg model, but they
are too tedious. Whereas, Green’s function is the better method, as
it is simple and can be applied to all temperature areas. As are
pointed out in Refs. [7,11], the two-time Green’s function method
is considered to be the standard method for magnetic systems.
Using this method, we will obtain a nonlinear differential
equation of motion. To get tractable solutions, the decoupling
method has to be used, such as the random phase approximation

(RPA) [12,13], Callen approximation (CA) [14], and Anderson–
Callen approximation (ACA) [15]. These approximations can be
given good results, which agree with the theoretical and
experimental results in a wide range of temperatures and
magnetic fields [10,16,17].

As are pointed out in Refs. [12–14], RPA and CA both yield a
good approximation to the Heisenberg ferromagnetic interaction,
but RPA provides a simpler way to obtain the magnetic properties
than CA. However, the term resulting from the single-ion
anisotropy has to be treated differently. If RPA yields for the
single-ion anisotropy, it will lead to unphysical results. Instead,
ACA is shown to be a good approximation in this situation [15,16].
For two- and three-dimensional cases of single-ion anisotropy,
ACA has been used to study field-induced magnetic reorientation
[16–18].

In this paper, we apply the two-time Green’s function method
to investigate one-dimensional (1D) quantum Heisenberg ferro-
magnet with the exchange anisotropy and single-ion anisotropy.
The 2D and 3D magnetic properties of this system have been
known [16,18]. Our motivation to study this problem is less
analytical study on 1D spin-1 magnetic properties affected by the
magnetic field. Most theoretical studies were confined in the
ferromagnetic chain only with the single-ion anisotropy [19–23],
and failed to give the magnetic behavior dependent explicitly
upon the exchange interaction and the anisotropic parameters.

In this work, the Hamiltonian of the model includes the
anisotropic ferromagnetic interaction, external magnetic field,
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exchange anisotropy and single-ion anisotropy. The magnetic
properties of the system are treated by RPA for the exchange
interaction term and ACA for the anisotropy term. The critical
temperature, magnetization and susceptibility are found to be as a
function of the temperature, magnetic field and anisotropies. Our
results are in agreement with the other theoretical results.

A brief outline of this paper is as follows. In Section 2, we give
the Heisenberg model. And using the method of Green’s function,
we employ RPA and ACA to establish the self-consistent equations.
In Section 3, we present our numerical results and investigate the
effect of external magnetic field, exchange anisotropy and single-
ion anisotropy on the magnetization and susceptibility. Finally,
brief conclusions are given in Section 4.

2. Model

The 1D spin-1 ferromagnetic Heisenberg model with the
exchange anisotropy and single-ion anisotropy under the external
magnetic field can be described by the following Hamiltonian:

H¼ �
J

2

X
/ijS

½aðSx
i Sx

j þSy
i Sy

j ÞþSz
i Sz

j � � b
X

i

ðSz
i Þ

2
� h

X
i

Sz
i ; ð1Þ

where J is the exchange interaction ðJ40Þ, and h is the external
magnetic field. a and b denote the exchange anisotropy and
single-ion anisotropy, respectively. The first summation runs over
pairs of nearest-neighbor sites, and the second and third over all
sites of lattice. Sx

i , Sy
i and Sz

i represent the three components of spin
operator at site i. Eq. (1) is the Ising mode and isotropic
ferromagnet for a¼ b¼ 0 and a¼ 1, b¼ 0, respectively.

In the following, we apply the spin raising and lowing
operators, S7

i ¼ Sx
i 7 iSy

i , to simplify the above Hamiltonian, which
can be rewritten as
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In order to obtain the magnetic properties of this system, we
utilize operators of Sþi and S�j to form Green’s functions, i.e.
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The equation of motion for Sþi ðtÞ can be written as
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Using Eq. (5), we can obtain the equations of motion for
Green’s functions
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In order to get a closed set of equations, the higher order
Green’s functions on the right hand side of the equations should
be decoupled. As mentioned above, we apply the RPA [12] for the
exchange coupling terms
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and the ACA [15,16] for the single-ion coupling terms
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For S¼ 1, using the following relationships:
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Eq. (9) can be rewritten to be
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Here the values of magnetization /Sz
i S and the z self-correlation

function /ðSz
i Þ

2S are considered to be in dependence of its sites i,
and we set m¼/SzS and /ðSz

i Þ
2S¼/ðSzÞ

2S in the following.
With the help of the RPA (8) and ACA (11), the equations of

motion for Green’s functions (6) and (7) become
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Here the well-known relationships for S¼ 1,
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3
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4
¼ ðSzÞ

2
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have been used in Eq. (13).
After Fourier transforming these equations with respect to the

space and time variable
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we can obtain the Fourier-transform solutions for Green’s
functions
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with
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