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a b s t r a c t

We investigate the properties of the spin-1/2 alternating Heisenberg chain using the coupled cluster

method accompanied by exact diagonalization up to 24 sites. The ground-state energy per spin e and

the spin gap D are calculated for a range of a. Our results show that the spin gap opens and the

dimerized state dominates the properties of the ground state as a41. We also study the approach of the

ground-state energy per spin e0 to the uniform spin chain. The results show that the critical behaviour

of e0 is well described by a power law with exponents 1.4307 and 1.4405 obtained by the coupled

cluster method and exact diagonalization, respectively.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

The study of low-dimensional gapped quantum antiferromag-
nets has attracted much experimental and theoretical interest in
recent years. Much research activity in this area has been focused on
the one-dimensional (1-D) antiferromagnetic Heisenberg (AFH)
spin chain with s ¼ 1. Haldane [1] argued that the system is gapful
and the spin gap has been found in compound CsNiCl3 [2]. There are
many studies to investigate Haldane’s conjecture. For example,
the research on the AKLT [3] model shows that each s ¼ 1 spin in
the ground state (GS) can be viewed as two s ¼ 1/2 spins in the
symmetric triplet state. If open boundary condition is considered,
two end spins of the AKLT chain are left and form two free s ¼ 1/2
objects and all the other two adjacent s ¼ 1/2 spins form the RVB
state. In article [4], the Haldane problem is studied with a 1-D
alternating Heisenberg spin-1/2 chain.

In the present paper, we study a 1-D alternating Heisenberg
chain with s ¼ 1/2; the exchange couplings between nearest
neighbour spins take J and aJ alternatively as shown in Fig. 1.

The Hamiltonian is

H ¼ J
XN

i¼1

ðS2iS2i�1 þ aS2iS2iþ1Þ ðJ40; aX1Þ (1)

The study of the system is important for studies of the magnetic
spin-Peierls effect [5] and the property of Cu(NO3)2 �2.5D2O can
be explained with this model [6]. In this paper, we use the coupled
cluster method (CCM) accompanied by exact diagonalization (ED)
to study this model. The CCM is one of the most universal and
powerful methods used in quantum many-body theory. In recent
years, the CCM has been applied to different quantum spin
systems with much success [7–13].

2. The coupled cluster method applied to the alternating
Heisenberg spin chain

2.1. The ground state

The detailed descriptions of the CCM applied to quantum spin
systems have been given in Refs. [7,12,13]. Here we apply the
method to the alternating Heisenberg spin chain directly. The first
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step of any CCM calculation is to choose a model state and this is
often a classical spin state. So we choose the Neel state as the
model state in our CCM calculations and the unit cell used in this
paper is indicated in Fig. 1. In order to facilitate the following
discussion, we divide the model into two sublattices, detonated A

and B, and we populate the A sublattice with ‘up’ spins and the B

sublattice with ‘down’ spins. Then we perform a rotation of the
local axes of the spins on the A sublattice by 1801 about the y-axis
such that all spins in the model state align along the negative
z-axis. After this rotation, the Hamiltonian of Eq. (1) can be
rewritten as

H ¼ � J
XN

i¼1

1

2
ðSþ2iS

þ

2i�1 þ S�2iS
�
2i�1Þ þ Sz

2iS
z
2i�1

� ��

þa
1

2
ðSþ2iS

þ

2iþ1 þ S�2iS
�

2iþ1Þ þ Sz
2iS

z
2iþ1

� ��
(2)

Then the CCM parameterizations of the ket GS and the GS
energy are given by [12,13]

c
�� � ¼ eS Fj i; S ¼

X2N

l¼1

X
i1 ;i2 ;...;il

Si1 ;i2 ;...;il s
þ

i1
sþi2 � � � s

þ

il
(3)

Eg ¼ Fh je�SHeS Fj i (4)

where |FS is the model state.
The CCM formalism is exact if we consider all spin configura-

tions in the S correlation operator, but it is usually impossible in
practice. In this paper, we use a quite general approximation
scheme called LSUBn [12,13] to truncate the expansion of the
operator S. In the LSUBn approximation, only the configurations
including n or fewer correlated spins which span a range of no

more than n contiguous lattice sites are retained. The funda-
mental configurations retained in the LSUBn approximation can
be easily found using the lattice symmetry and the restricted
condition Sz

tol ¼ S2N
i¼1Sz

i ¼ 0 (because the GS lies in the subspace
Stol

z
¼ 0). For example, there are 6 fundamental configurations as

shown graphically in Fig. 2(a) retained in the LSUB4 approxima-
tion. The number of LSUBn configurations with n ¼ {6,8,10} is
given in Table 1.

In order to calculate the GS energy, we have to find the
correlation coefficients contained in the operator S. Then we
need to solve the coupled-ket-state equations, which are obtained
by [12,13]

Fh js�i1 s�i2 � � � s
�
il

e�SHeS Fj i ¼ 0 (5)

For example, the LSUB4 coupled equations are given by

Jð0:5� 0:5S2
2i�1;2i þ S2i�1;2i;2iþ1;2iþ2 þ S2i�3;2iS2i;2iþ1Þ

þ aJð�S2i�1;2iS2i;2iþ1 � S2i�1;2i þ S2i�3;2iS2i;2iþ3Þ ¼ 0 (6.1)

Jð�S2i�1;2iS2i�3;2i � S2i�3;2iÞ þ aJð�S2i�3;2iS2i;2iþ1

� S2i�3;2i þ 0:5S2i�1;2i;2iþ1;2iþ2 þ 0:5S2
2i�1;2iÞ ¼ 0 (6.2)

Jð�S2i�1;2iS2i;2iþ1 � S2i;2iþ1 þ S2i�3;2iS2i;2iþ3Þ þ aJð0:5

� 0:5S2
2i;2iþ1 þ S2i;2iþ1;2iþ2;2iþ3 þ S2i�1;2iS2i;2iþ3Þ ¼ 0 (6.3)
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Fig. 1. The structure of the alternating Heisenberg chain. The unit cell is also

indicated in this figure.
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Fig. 2. The fundamental LSUB4 configurations for the ground and the excited state are given by diagrams a and b, separately. The centers of the shaded squares mark the

flipped spins with respect to the model Neel state. Note that the configurations are independent of the index i by the lattice symmetry.

Table 1
Number of fundamental configurations of the LSUBn approximation with

n ¼ {6,8,10}

NF NFe

LSUB6 17 15

LSUB8 50 56

LSUB10 157 210

NF denotes the number of the fundamental configurations for the ground state, and

NFe denotes the number of the fundamental configurations for the excited state.
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