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a b s t r a c t

In this paper dielectric phenomena with two relaxation times are discussed. By assuming a sinusoidal

form for induction vector D a sinusoidal electric field is generated and it depends on unknown

phenomenological coefficients whose expressions together to their numerical values as functions of

frequency are obtained. Moreover, electromagnetic wave propagation is analysed obtaining wave vector

as function of the aforementioned coefficients. The results are applied to a Vinylidene Chloride-Vinyl

Chloride (VDC–VC) to test the applicability of the model.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

In a previous paper [1] the connection between phenomen-
ological coefficients and quantities experimentally measurable,
e.g. real and imaginary parts of complex dielectric constant, has
been obtained for media with dielectric relaxation phenomena
and in the case in which just one relaxation time is considered.

In Refs. [2–4] a phenomenological equation was proposed in
which two relaxation times occur and this is connected to physical
behaviour of materials. In fact the instantaneous increasing
or decreasing in the polarization is impossible because any
change of the polarization is related to the motion of any kind
of microscopic particles which cannot be infinitely fast. The
phenomenological equation will be discussed in Section 2 and we
will refer to the case in which two relaxation times are taken into
account and in such a context we will study electromagnetic wave
propagation obtaining wave vector as function of the aforemen-
tioned quantities experimentally measurable.

Our aim is to study the system under a sinusoidal perturbation
represented by the induction vector D, which is an extensive
variable (cause), and to analyse the relative electric field as an
intensive variable (effect) inside the medium [5]. In particular, if
we consider a generic dielectric medium placed between the plain
plate of a capacitor where a sinusoidal voltage has been applied,
then on the plates a sinusoidal surface charge arises whose
density is characterized by the normal component of induction

vector D ¼ D � n (n is the unit normal to the plates) generating a
sinusoidal electric field inside the capacitor [6].

The linear-response theory establishes that if D (cause) evolves
harmonically [5], i.e.

D� ¼ D0eiot (1.1)

where D0 is the displacement amplitude and o the angular
frequency, then the normal component (E ¼ E � n) of the electric
field inside the capacitor is also harmonic and characterized by
the same frequency but different phase and amplitude:

E� ¼ E0eiðotþfðoÞÞ (1.2)

where E0 is the field amplitude and f the phase lag. Furthermore
we have

D� ¼ ��E� ¼ ð�0 � i�00ÞE (1.3)

where �� is the complex dielectric constant and

�0 ¼ j��j cosf; �00 ¼ j��j sinf;
�00

�0
¼ tanf (1.4)

the quantities �0 and �00 are the real and imaginary components of
the complex dielectric constant �� [7].

The quantities �0 and �00 are related to the relative dielectric
constants �1, �2 by the following expressions:

�0 ¼ �0�1; �00 ¼ �0�2 (1.5)

where �0 is the dielectric constant in vacuum. These are usually
called the dielectric storage factor and dielectric loss factor,
respectively, and tanf is termed the loss tangent. Let us remark
that in a relaxation region �0 is decreasing with frequency from a
value of �R to �U . This decrease represents the dispersion of the
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dielectric constant [6], the difference ð�R � �UÞ is known as the
magnitude of the relaxation and it expresses a measure of the
orientation polarization [8]. In relaxation region �00 passes through
a maximum at a frequency o�00 . By computing the real part of
Eq. (1.2) one has

E ¼ D0s1 sinðotÞ þ D0s2 cosðotÞ (1.6)

where

s1 ¼
E0ðoÞ

D0
cosfðoÞ (1.7)

s2 ¼
E0ðoÞ

D0
sinfðoÞ (1.8)

If electric charge density on the plates (extensive quantity) is
viewed as the cause determining the electric field inside capacitor
(intensive variable), it allows us to study dielectric relaxation
phenomena. By defining the reciprocal complex dielectric con-
stant s� ¼ E�=D� ¼ s1 þ is2 the complex dielectric constant is
related to it as

�� ¼
1

s�
¼ �0 � i�00 (1.9)

where

s1 ¼
�0

�02 þ �002
; s2 ¼

�00

�02 þ �002
(1.10)

Taking into account Eqs. (1.7) and (1.8) the following expressions
are obtained:

�0 ¼
D0

E0ðoÞ
cosðoÞ (1.11)

�00 ¼
D0

E0ðoÞ
sinfðoÞ (1.12)

Since the phase difference f depends on frequency, it follows that
for values of o sufficiently small f approaches to zero obtaining
from Eqs. (1.12) and (1.12):

�0 ffi
D0

E0R
¼ �R; �00 ffi 0 (1.13)

where E0R is the value of E0ðoÞ for sufficiently small values of o
and �R is the relaxed value of �0. Analogously, for sufficiently large
values of o the phase f goes to zero and one has

�0 ffi
D0

E0U
¼ �U ; �00 ffi 0 (1.14)

where E0U is the value of E0ðoÞ for large values of o, and �U is the
un-relaxed value of �0.

2. Phenomenological coefficients

Following Refs. [9–15], a general hypothesis concerning the
entropy allows us to decompose the polarization vector P as

P ¼ Pð0Þ þ Pð1Þ (2.1)

where Pð0Þ and Pð1Þ are the reversible (elastic) and irreversible
parts of P, respectively. In the linear approximation and by
neglecting cross effects as the influence of electric conduction,
heat conduction and (mechanical) viscosity on electric relaxation,
the following relaxation equation may be derived [9]:

wð0ÞEP Eþ
dE

dt
¼ wð0ÞPE Pþ wð1ÞPE

dP

dt
þ wð2Þ

ðPEÞ

d2P

dt2
(2.2)

where E is the electric field and wð0Þ
ðEPÞ, w

ðiÞ
ðPEÞ ði ¼ 0;1;2Þ are algebraic

functions of the coefficients occurring in the phenomenological
equations (describing the irreversible processes) and in the
equations of state.

By considering the expression for the polarization vector:

P ¼ D� �0E (2.3)

where �0 is the dielectric constant in vacuum; by substituting it in
Eq. (1.3) the equation for dielectric relaxation reduces to

wð0Þ
ðEDÞEþ w

ð1Þ
ðEDÞ

dE

dt
þ wð2Þ

ðEDÞ

d2E

dt2
¼ wð0Þ

ðDEÞDþ w
ð1Þ
ðDEÞ

dD

dt
þ wð2Þ

ðDEÞ

d2D

dt2
(2.4)

where we are setting

wð0Þ
ðEDÞ ¼ wð0Þ

ðEPÞ þ �0wð0ÞðPEÞ (2.5)

wð1Þ
ðEDÞ ¼ 1þ wð1Þ

ðPEÞ�0 (2.6)

wð2Þ
ðEDÞ ¼ wð2Þ

ðPEÞ�0 (2.7)

wð0Þ
ðDEÞ ¼ wð0Þ

ðPEÞ (2.8)

wð1Þ
ðDEÞ ¼ wð1Þ

ðPEÞ (2.9)

wð2Þ
ðDEÞ ¼ wð2Þ

ðPEÞ (2.10)

By dividing wð2Þ
ðEDÞa0 Eq. (2.4) one obtains the following normal

form:

wð0Þ
ðEDÞ

wð2Þ
ðEDÞ

Eþ
wð1Þ
ðEDÞ

wð2Þ
ðEDÞ

dE

dt
þ

d2E

dt2
¼
wð0Þ
ðDEÞ

wð2Þ
ðEDÞ

Dþ
wð1Þ
ðDEÞ

wð2Þ
ðEDÞ

dD

dt
þ

1

�0

d2D

dt2
(2.11)

By computing the time derivative of D expressed by the real part
of Eq. (1.1) having used the normal component of electric field
E ¼ E � n, the differential equation (2.11) can be written as

d2E

dt2
þ
wð1Þ
ðEDÞ

wð2Þ
ðEDÞ

dE

dt
þ
wð0Þ
ðEDÞ

wð2Þ
ðEDÞ

E ¼ a sinðotÞ þ b cosðotÞ (2.12)

where

a ¼ D0

wð0Þ
ðDEÞ

wð2Þ
ðEDÞ

�
o2

�0

 !
; b ¼ D0

wð1Þ
ðDEÞo

wð2Þ
ðEwDÞ

. (2.13)

The integration of differential equation (2.12) gives the following
general solution that gives the electric field:

EðtÞ ¼ c1c1el1t þ c2el2t þ
aðl1l2 �o2Þ � boðl1 þ l2Þ

ðl2
1 þo2Þðl2

2 þo2Þ

" #
sinðotÞ

þ
bðl1l2 �o2Þ þ aoðl1 þ l2Þ

ðl2
1 þo2Þðl2

2 þo2Þ

" #
cosðotÞ (2.14)

where c1 and c2 are two arbitrary integration constants, l1 and l2

are solutions of the homogeneous equation associated to (2.12)

l2
þ
wð1Þ
ðEDÞ

wð2Þ
ðEDÞ

lþ
wð0Þ
ðEDÞ

wð2Þ
ðEDÞ

¼ 0 (2.15)

moreover the quantities �l�1
1 and �l�1

2 represent the two
relaxation times. Since Eqs. (1.6) and (2.14) describe mathemati-
cally the same phenomenon, by neglecting any transitory effect,
the identification of two equations leads to the following:

D0s1 ¼
aðl1l2 �o2Þ � boðl1 þ l2Þ

ðl2
1 þo2Þðl2

2 þo2Þ
(2.16)

D0s2 ¼
bðl1l2 �o2Þ þ aoðl1 þ l2Þ

ðl2
1 þo2Þðl2

2 þo2Þ
(2.17)

By using Eqs. (1.10) and (2.13), from Eqs. (2.16) and (2.17) we
obtain

wð1Þ
ðPEÞ ¼

wð0Þ
ðEPÞ�

00 þoð�0 � �0Þ

o½ð�0 � �0Þ
2
þ �002�

(2.18)

wð2Þ
ðPEÞ ¼

wð0Þ
ðPEÞ

o2
þ
wð0Þ
ðEPÞð�0 � �0Þ þ �00o
o2½ð�0 � �0Þ

2
þ �002�

(2.19)

ARTICLE IN PRESS

V. Ciancio et al. / Physica B 404 (2009) 320–324 321



Download	English	Version:

https://daneshyari.com/en/article/1813948

Download	Persian	Version:

https://daneshyari.com/article/1813948

Daneshyari.com

https://daneshyari.com/en/article/1813948
https://daneshyari.com/article/1813948
https://daneshyari.com/

