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a b s t r a c t

In this work renormalization of the effective mass of an electron due to a small polaron formation is

studied within the framework of the extended Holstein model. It is assumed that an electron moves

along the one-dimensional chain of ions and interacts with ions vibrations of a neighboring chain via a

long-range density–displacement type force. By means of the exact calculations a renormalized mass of

a nonadiabatic small polaron is obtained at strong coupling limit. The obtained results compared with

the mass of small polaron of ordinary Holstein model. The effect of ions vibrations polarization on the

small polaron mass is addressed.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Polarons have been extensively studied since a seminal paper
of Landau [1]. They are divided into the small and large polarons
in accordance with the size of their wave function. In the first case
a carrier is coupled to intramolecular vibrations and self-trapped
on a single site. Its size is the same as the size of the phonon cloud,
both are about the lattice constant. In the case of large polarons
the size of a polaron is also the same as the size of the phonon
cloud, but the polaron extends over many lattice constants. The
properties of large polarons in the effective mass approximation
have been studied in greater detail by Pekar [2], Fröhlich [3],
Feynman [4], Devreese [5] and other authors. When the electro-
n–phonon coupling is relatively strong, l ¼ Ep=D41, all electrons
in the Bloch band are ‘‘dressed’’ by phonons. In this regime the
electron kinetic energy, which is less than the half-bandwidth (D),
is small compared with the potential energy due to a local lattice
deformation, Ep, caused by the electrons themselves. Here the
finite bandwidth is essential and the effective mass approxima-
tion cannot be applied. The electron is called a small polaron in
this regime. The main features of small polarons were understood
by Tjablikov [6], Yamashita and Kurosava [7], Sewell [8], Holstein
[9] and his school [10,11], Lang and Firsov [12], Eagles [13] and
others and described within the framework of Holstein model

(HM) in several review papers and textbooks [5,14–18]. In Ref. [19]
the polaron model with a long-range ‘‘density–displacement’’
type force was introduced by Alexandrov and Kornilovitch. The
model by itself represents an extension of the Fröhlich polaron
model to a discrete ionic crystal lattice or extension of the
Holstein polaron model to a case when an electron interacts with
many ions of a lattice with longer ranged electron–phonon
interaction. Subsequently, the model was named as the extended
Holstein model (EHM) [20]. In the model polaron has an internal
structure different from the internal structure of a polaron in
ordinary Holstein model. The size of a polaron in EHM is about the
lattice constant, but its phonon cloud spreads overthe whole
crystal. Within the model a renormalized mass appears to be
much smaller compared with that in the ordinary Holstein model.
Conclusions of Ref. [19] were confirmed later by other authors
[20–22]. Besides that Fehske et al. [20] investigated the electro-
n–lattice correlations, single-particle spectral function and optical
conductivity of a polaron in EHM in the strong and weak coupling
regimes by means of an exact Lancroz diagonalization method.
Other properties of EHM such as the ground state spectral weight,
the average kinetic energy and the mean number of phonons by
means of the variational and quantum Monte Carlo simulation
approaches were studied in Refs. [23,24]. All numerical and
analytical results in Ref. [19], were obtained in the nonadiabatic or
near-nonadiabatic regimes. In the work [25] we extended this
model to the adiabatic limit and found that the mass of a polaron
in EHM is much less renormalized than the mass of a small
Holstein polaron in this limit as well. Refs. [19,25] considered an
electron interacting with ions vibrations of an upper chain,
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polarized perpendicular to the chain. This case mimics high� Tc

cuprates, where the in-plane (CuO2) carriers are strongly coupled
with the c-axis polarized vibrations of the apical oxygen ions [26].
A more realistic case when the apical ions vibrate in all directions
and its effect on a mass of a small polaron in EHM was studied in
Ref. [27]. At the same time polarons were experimentally
recognized as quasiparticles in the novel materials, in particular,
in the superconducting cuprates and colossal magnetoresistance
manganites [28]. In the previous papers of the author [25,27]
mass renormalization of an electron due to a small polaron
formation in EHM was restricted only to a simple two-site model.
Here we extend these studies for a many-site system and derive
an analytical expression for the mass of a nonadiabatic small
polaron in EHM in a strong coupling regime and compare it with
the those of small polarons in an ordinary Holstein model.

2. The model

We consider an electron performing hopping motion on a
lower chain consisting of the static sites, but interacting with all
ions of an upper chain via a long-range density–displacement
type force, as shown in Fig. 1, similar to a case considered in
Refs. [21,22] . So, the motion of an electron is always one-
dimensional, but a vibration of the upper chain’s ions is isotropic
and two-dimensional one.

The Hamiltonian of the model is

H ¼ He þ Hph þ He2ph; ð1Þ

where

He ¼ �t
X

n

ðcyncnþa þ H:c:Þ ð2Þ

is the electron hopping energy,

Hph ¼
X
m;a
�

_2@2

2M@u2
m;a
þ

Mo2u2
m;a

2

 !
ð3Þ

is the Hamiltonian of the vibrating ions,

He�ph ¼
X

n;m;a
fm;aðnÞ � um;acyncn ð4Þ

describes interaction between the electron that belongs to a lower
chain and the ions of an upper chain. Here cynðcnÞ is a creation
(destruction) operator of an electron on a cite n, um;a is the
a ¼ y; z-polarized displacement of the m-th ion and fm;aðnÞ is an
interacting density–displacement type force between an electron
on a site n and the a polarized vibration of the m-th ion. M is the
mass of the vibrating ions and o is their frequency. An explicit
form of y and z coordinates of interacting force are

fm;yðnÞ ¼
kyjn�mþ a=2j

ðjn�mþ a=2j2 þ b2Þ
3=2

ð5Þ

and

fm;zðnÞ ¼
kzb

ðjn�mþ a=2j2 þ b2Þ
3=2

; ð6Þ

where ky and kz are some coefficients. The distance along the
chain jn�mj is measured in the units of a lattice constant jaj ¼ 1.
The distance between the chains is b ¼ 1 too.

3. Strong coupling and nonadiabatic limit

In the strong coupling limit (l ¼ Ep=D41) and the nonadia-
batic approximation wave function of the system is presented as a
superposition of the normalized Wannier functions Wðr� nÞ,
localized on the site n,

C ¼
X

n

Anðum;aÞWðr� nÞ: ð7Þ

For a convenience we consider the 2N þ 1 ions in a lower chain.
Then Schrödinger equation HC ¼ EC is reduced to a system of the
coupled second order differential equations with respect to the
infinite number of the vibrational coordinates um;a

E� Hph �
X
m;a

fm;aðniÞ � um;a

 !
Ani
ðum;aÞ ¼ t

X
nani

Anðum;aÞ ð8Þ

with i ¼ 0;71;72; . . . ;7ðN � 1Þ;7N. Further we omit an
argument um;a of An, but keep in mind that it depends on
them. The common tool to investigate Eq. (8) is a perturbation
approach with respect to the hopping integral. In the zero
order (t ¼ 0) the system is ð2N þ 1Þ-fold degenerate with the
electron localized, for example, on site ni, so that An ¼

~Ani
if n ¼ ni

where

~Ani
¼ exp �

Mo
2_

X
m;a

um;a þ
fm;aðniÞ

Mo2

� �2
" #

ð9Þ

and zero otherwise. In the first order to a hopping integral t we are
looking for a solution of the system (8) as a single column matrix
ðAn�N

;Anð�Nþ1Þ
; . . . ;AnðN�1Þ

;AnN
Þ
T (T—standing for a transpose matrix)

which is the linear combinations of ~Ani
as

An�N
;Anð�Nþ1Þ

; . . . ;AnðN�1Þ
;AnN

� �T
¼ a�N

~An�N
;0; . . . ;0

� �T

þai 0; . . . ; ~Ani
; . . . ;0

� �T

þa�N 0; . . . ;0; ~AnN

� �T
: ð10Þ

Substituting Eq. (10) into the system of Eq. (8) one gets a system
of the linear equations with respect to the coefficients
a�N ;a�Nþ1; . . . ;aN�1;aN .

EðniÞ
~Ani

ai � t
X
kai

~Aniþk
aiþk ¼ 0; ð11Þ

where

EðniÞ ¼ E� Hph �
X
m;a

fm;aðniÞ � um;a

 !
: ð12Þ

The system of Eq. (11) has a square ð2N þ 1Þ � ð2N þ 1Þmatrix. The
diagonal elements of the matrix are the product of Eqs. (9) and
(12). Next we introduce the Born-von Karmana boundary condi-
tions ~An�N

¼ ~AnN
which ensures a translation invariance of the

system and enables us rewrite the system of Eq. (11) as

~Eai �
X
kai

ti;kak ¼ 0: ð13Þ
Fig. 1. An electron hops on a lower chain and interacts with the ions vibrations of

an upper infinite chain via a density–displacement type force fm;aðnÞ. The distances

between the chains and between the ions are assumed equal to 1.
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