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a b s t r a c t

Plasmon and polariton modes are derived for an ideal semi-infinite (half-space) plasma and an ideal

plasma slab by using a general, unifying procedure, based on equations of motion, Maxwell’s equations

and suitable boundary conditions. Known results are re-obtained in much a more direct manner and

new ones are derived. The approach consists of representing the charge disturbances by a displacement

field in the positions of the moving particles (electrons). The dielectric response and the electron energy

loss are computed. The surface contribution to the energy loss exhibits an oscillatory behaviour in the

transient regime near the surfaces. The propagation of an electromagnetic wave in these plasmas is

treated by using the retarded electromagnetic potentials. The resulting integral equations are solved and

the reflected and refracted waves are computed, as well as the reflection coefficient. For the slab we

compute also the transmitted wave and the transmission coefficient. Generalized Fresnel’s relations are

thereby obtained for any incidence angle and polarization. Bulk and surface plasmon–polariton modes

are identified. As it is well known, the field inside the plasma is either damped (evanescent) or

propagating (transparency regime), and the reflection coefficient for a semi-infinite plasma exhibits an

abrupt enhancement on passing from the propagating regime to the damped one (total reflection).

Similarly, apart from characteristic oscillations, the reflection and transmission coefficients for a plasma

slab exhibit an appreciable enhancement in the damped regime.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

After the discovery of bulk plasmons in an infinite electron
plasma [1–3], there was a great deal of interest in plasmons
occurring in structures with special geometries, like a half-space
(semi-infinite) plasma, a plasma slab of finite thickness, a two-
plasmas interface (two plasmas bounding each other), a two-
dimensional sheet with an aperture, a slab with a cylindrical hole,
structures with surface gratings or regular holes patterns, layered
films, cylindrical rods and spherical particles, etc. There is a vast
literature on various structures with special geometries exhibiting
plasmon modes. These studies were aimed mainly at identifying
new plasmon modes, like the surface plasmons [4–11], accounting
for the electron energy loss experiments and exploring the
interaction of the electron plasma with electromagnetic radiation
(polariton excitations) [12–24]. More recently, a possible en-
hancement of the electromagnetic radiation scattered on electron
plasmas with special geometries enjoyed a particular interest
[25–27]. In all these studies the plasmon and polariton modes are
of fundamental importance [28–32]. The methods used in
deriving such results are of great diversity, resorting often to

particular assumptions, such that the basic underlying mechan-
ism of plasmons or polaritons’ occurrence is often obscured. The
need is therefore felt of having a general, unifying procedure for
deriving plasmon and polariton modes in structures with special
geometries, as based on the equation of motion of the charge
density, Maxwell’s equations and the corresponding boundary
conditions. Such a procedure is presented in this paper for an ideal
semi-infinite plasma and an ideal plasma slab.

We represent the charge disturbances as dn ¼ �n div u, where
n is the (constant, uniform) charge concentration and u is a
displacement field of the mobile charges (electrons). This
representation is valid for KuðKÞ51, where K is the wavevector
and uðKÞ is the Fourier component of the displacement field.
We assume a rigid neutralizing background of positive charge, as
in the well-known jellium model. In the static limit, i.e. for
Coulomb interaction, the Lagrangian of the electrons can be
written as

L ¼

Z
dr

1

2
mn _u2

�
1

2

Z
dr0Uðjr� r0jÞdnðrÞdnðr0Þ

� �

þ e

Z
drFðrÞdnðrÞ; ð1Þ

where m is the electron mass, UðrÞ ¼ e2=r the Coulomb energy, �e

the electron charge and FðrÞ the external scalar potential. Eq. (1)
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leads to the equation of motion

m €u ¼ n grad

Z
dr0Uðjr� r0jÞdiv uðr0Þ þ e gradF ð2Þ

which is the starting equation of our approach. We leave aside the
dissipation effects (which can easily be included in Eq. (2)).

By using the Fourier transform for an infinite plasma it is easy
to see that the eigenmode of the homogeneous Eq. (2) is the well-
known bulk plasmon mode given by o2

p ¼ 4pne2=m. On the other
side, equation dn ¼ �n div u is equivalent with Maxwell’s equa-
tion div Ei ¼ �4pedn, where Ei ¼ 4pneu is the internal electric
field (equal to �4pP, where P is the polarization). Making use of
the electric displacement D ¼ �gradF ¼ eðDþ EiÞ, we get the
well-known dielectric function e ¼ 1�o2

p=o2 in the long-wave-
length limit from the solution of the inhomogeneous Eq. (2).
Similarly, since the current density is j ¼ �en _u, we get the well-
known electrical conductivity s ¼ io2

p=4po.
We apply this approach to a semi-infinite plasma and a plasma

slab. First, we derive the surface and bulk plasmon modes and
obtain the dielectric response and the electron energy loss for a
semi-infinite plasma. The surface contribution to the energy loss
exhibits an oscillatory behaviour in the transient regime near the
surface. Further on, we consider the interaction of the semi-
infinite plasma with the electromagnetic field, as described by the
usual term ð1=cÞ

R
drjA�

R
drrF in the Lagrangian, where A is the

vector potential, r ¼ en div u is the charge density and F is the
scalar potential. We limit ourselves to the interaction with the
electric field, and compute the reflected and refracted waves, as
well as the reflection coefficient. Generalized Fresnel’s relations
are obtained for any incidence angle and polarization. We find it
more convenient to use the radiation formulae for the retarded
potentials, instead of using directly the Maxwell’s equations, and
the resulting integral equations are solved. Bulk and surface
plasmon–polariton modes are identified. The field inside the
plasma is either damped (evanescent) or propagating (transpar-
ency regime), and the reflection coefficient exhibits an abrupt
enhancement on passing from the propagating to the damping
regime (total reflection). Finally, we give similar results for a
plasma slab, where we compute also the transmitted field and the
transmission coefficient. Apart from characteristic oscillations, the
reflection and transmission coefficients for a plasma slab exhibit
an appreciable enhancement in the damped regime. The present
approach can be extended to various other plasma structures with
special geometries.

2. Plasma eigenmodes

We consider an ideal semi-infinite plasma extending over the
half-space z40 (and bounded by the vacuum for zo0). The
displacement field u is then represented as ðv;u3ÞyðzÞ, where v is
the displacement component in the ðx; yÞ-plane, u3 is the
displacement component along the z-direction and yðzÞ ¼ 1 for
z40 and yðzÞ ¼ 0 for zo0 is the step function. In equation of
motion (2) div u is then replaced by

div u ¼ div vþ
@u3

@z

� �
yðzÞ þ u3ð0ÞdðzÞ; ð3Þ

where u3ð0Þ ¼ u3ðr; z ¼ 0Þ, r being the in-plane ðx; yÞ position
vector. Eq. (2) becomes

m €u ¼ ne2 grad

Z
dr0dz0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� r0Þ2 þ ðz� z0Þ2

q

� div vðr0:z0Þ þ
@u3ðr0; z0Þ

@z0

� �

þne2 grad

Z
dr0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� r0Þ2 þ z2

q u3ðr
0;0Þ þ e gradF ð4Þ

for z40. One can see the (de)-polarizing field occurring at the free
surface z ¼ 0 (the second integral in Eq. (4)).

We use Fourier transforms of the type

uðr; z; tÞ ¼
X

k

Z
douðk; z;oÞeikre�iot ð5Þ

(for in-plane unit area), as well as the Fourier representation

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2
p ¼

X
k

2p
k

e�kjzjeikr ð6Þ

for the Coulomb potential. Then, it is easy to see that Eq. (4) leads
to the integral equation

o2v ¼
1

2
ko2

p

Z 1
0

dz0ve�kjz�z0 j þ
1

2k
o2

p

Z 1
0

dz0
@v

@z0
@

@z0
e�kjz�z0 j �

iek

m
F

ð7Þ

and iku3 ¼ @v=@z, where we have dropped out for simplicity the
arguments k; z and o. The v-component of the displacement field
is directed along the wavevector k (in-plane longitudinal waves).
This integral equation can easily be solved. Integrating by parts in
its rhs we get

o2v ¼ o2
pv�

1

2
o2

pv0e�kz �
iek

m
F; ð8Þ

hence

v ¼
ieko2

p

m

F0

ðo2 �o2
pÞð2o2 �o2

pÞ
e�kz �

iek

m

F
o2 �o2

p

u3 ¼ �
eko2

p

m

F0

ðo2 �o2
pÞð2o2 �o2

pÞ
e�kz �

e

m

F0

o2 �o2
p

; ð9Þ

where v0 ¼ vðz ¼ 0Þ, F0 ¼ Fðz ¼ 0Þ and F0 ¼ @F=@z. One can see
the surface contributions (terms proportional to F0e�kz) and bulk
contributions (F;F0-terms).

The solutions given by Eqs. (9) exhibit two eigenmodes, the
bulk plasmon ob ¼ op and the surface plasmon os ¼ op=

ffiffiffi
2
p

, as it
is well known. Indeed, the homogeneous Eq. (8) (F ¼ 0) has two
solutions: the surface plasmon v ¼ v0e�kz for o2 ¼ o2

p=2 and the
bulk plasmon v0 ¼ 0 for o2 ¼ o2

p. Making use of this observation
we can represent the general solution as an eigenmodes series

vðk; zÞ ¼
ffiffiffiffiffiffi
2k
p

v0ðkÞe
�kz þ

X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2

k2 þ k2

s
vðk;kÞsinkz ð10Þ

for z40, where vðk;�kÞ ¼ �vðk;kÞ and iku3ðk; zÞ ¼ @vðk; zÞ=@z.
Then, it is easy to see that the hamiltonian H ¼ T þ U correspond-
ing to the Lagrangian L ¼ T � U given by Eq. (1) becomes

T ¼ nm
X

k

_v�0ðkÞ _v0ðkÞ þ nm
X
kk

_v�ðk;kÞ _vðk;kÞ

U ¼ 2pn2e2
X

k

v�0ðkÞv0ðkÞ þ 4pn2e2
X
kk

v�ðk;kÞvðk;kÞ; ð11Þ

where T is the kinetic energy and U is the potential energy. We
can see that this hamiltonian corresponds to harmonic oscillators
with frequencies os ¼ op=

ffiffiffi
2
p

and ob ¼ op.
Making use of Ei ¼ 4pneu and Eqs. (9) we can write down the

internal field (polarization) as

E?ðk; z;oÞ ¼
iko4

pFðk;0;oÞ
ðo2 �o2

pÞð2o2 �o2
pÞ

e�kz �
iko2

pFðk; z;oÞ
o2 �o2

p

EJðk; z;oÞ ¼ �
ko4

pFðk;0;oÞ
ðo2 �o2

pÞð2o2 �o2
pÞ

e�kz �
o2

pF
0ðk; z;oÞ

o2 �o2
p

; ð12Þ
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