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On the momentum of mechanical plane waves
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Abstract

Momentum of a mechanical, harmonic plane wave is derived and explained as a relativistic effect arising from the presence of tension

in moving elements of the medium. Neglect of the relativistic corrections leads to the paradox, which is formulated and explained.

Explicit results for momentum density resulting from tension for transverse and longitudinal waves are discussed. The idea of

experiments for quantitative measurements of the momentum density is presented.
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1. Introduction

Momentum density dp/dV is strictly related to the energy
flowing per unit surface per unit time [1]:

dp

dV
¼

1

c2
S (1)

where c is the speed of light, and can be obtained from the
Lorentz transformation of momentum fourvector. In case
of electromagnetic fields vector S coincides with the
Poynting vector [2]. Although the relation between the
energy flow and the momentum density (1) is strictly valid,
precise recognition of the momentum density is sometimes
not straightforward [3]. In the case of mechanical waves, in
particular acoustic plane waves in elastic medium, the
situation requires careful analysis. Indeed, in the canonical
courses of physics [1,4,5] one cannot find discussion of the
question of the momentum density of such a wave. In
particular, to our knowledge one can hardly find an explicit
derivation of the momentum density when a textbook
example, masses connected by springs, which is introduc-
tory example for the concept of sound and phonons,
is discussed. Theoretical considerations presented in
Refs. [6–11] do not suggest any possibility of measuring
of the momentum density of plane waves. Some published

results for momentum density of plane waves disagree with
Eq. (1).
Let us consider the textbook example of infinite chain of

springs with stiffness constant k connected with point
masses m [12]. The length of the springs at equilibrium is L.
Each mass is numbered by n, and vibrates about its
positions of equilibrium only. Position of the nth mass is
xn(t). Deformation of the system C(n) (see Fig. 1a)
understood as a departure from the equilibrium, is
described by

CðnÞ ¼ xnðtÞ � nL (2)

Equation of motion is

€C
ðnÞ
¼ �k=mð2CðnÞ �Cðn�1Þ �Cðnþ1ÞÞ (3)

and a harmonic running wave is described by

CðnÞ ¼ C0 cos ðnqL� otþ jÞ (4)

where q is the wave vector, j constant phase and the
dispersion relation, o(q), is

o ¼ 2
ffiffiffiffiffiffiffiffiffi
k=m

p
sin

Lq

2
(5)

Eq. (4) describes a sinusoidal wave travelling from left to
right. The system transmits energy. This can be visualized
in gedanken experiment. Let us cut the system just before
mass n+1 and attach a body that moves with a friction (see
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Fig. 1b). We will observe dissipation of the wave energy by
the body. In order to calculate the energy flow of the wave
running from left to right per unit time, let us perform
another gedanken experiment. Let us now cut the system
before mass n�1 and apply an external force F(t) such that
all masses to the right will move according to Eq. (4) (see
Fig. 1c). The work W per unit time of the force is

dW

dt
¼ F ðtÞ _C

ðn�1Þ
¼ �kðCðn�2Þ �Cðn�1ÞÞ _C

ðn�1Þ
(6)

The average power transmitted to the system is the
energy flow:

dW

dt

� �
¼

1

t

Z t0þt

t0

dW

dt
dt ¼

1

2
C2

0ko sin Lq (7)

where t is the period of the vibrations t ¼ 2p/o. In context
of the generality of Eqs. (1), (7), should result in the
momentum density of the particular example of mechanical
plane wave (4):

dp

dx
¼

1

c2L

dW

dt

� �
¼

1

c2
C2

0mo2

2L

do
dq

(8)

The do/dq in Eq. (8) is the group velocity and can be
obtained from dispersion relation (5). We do not write
explicit result for do/dq in order to keep it as a group
velocity.

The result (8) can be extended to three-dimensional body
consisting of masses connected by springs forming simple
cubic structure. For the longitudinal wave in the (1 0 0)
direction we have the momentum density:

dp

dV
¼

1

c2L3

dW

dt

� �
q

q
¼

1

c2
C2

0ro
2

2

do
dq

q

q
(9)

The results (8) and (9) are simple consequences of
Eq. (1). The right-hand sides of Eqs. (8) and (9) are the
energy density of the wave multiplied by the group velocity
and divided by the square of speed of light. Let us
recognize the specific form of the expressions describing the
momentum density in Eqs. (8) and (9). Mechanical

momentum of the nth ball is just m _C
ðnÞ
. However this

quantity averaged over time yields zero. Also this quantity
for certain time (summed over entire system) is zero. If one
treats the system as relativistic one and corrects the
momentum by a relativistic factor plus a relativistic
contribution coming from potential energy of the moving
spring, one also gets zero momentum density. This result
can serve as paradox in context of Eqs. (8) and (9). In the
next paragraphs we show that the ‘‘hidden momentum’’
results from the tension present in the moving springs.

2. Recognition of the ‘‘hidden momentum’’

Let us consider in the inertial system O an elastic
medium of density r at the rest. Consider next an element
of the same medium in which an uniaxial stress is present,
see Fig. 2. The energy of the compressed element is larger
by potential energy resulting from the Hooks’ law.
Although it is obvious, we quote that none of the forces
shown in Fig. 2 is performing the work in the O system.
Let us observe the elements of the bodies from the

inertial system O0, which is moving with respect to the O

with velocity u. We will observe Lorentz contraction of
both elements and their constant velocity movement. There
is, however, remarkable difference between the energy
flows in both elements. In the uncompressed element there
is a flow of mass only while in the compressed one, forces
F1 and F2 are performing a work, because these forces are
acting on the ends moving with velocity �u. So there is an
additional flow of the energy through the compressed
element, and according to Eq. (1) an additional momentum
density should be present.
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Fig. 1. (a) Part of infinite system of masses and springs, (b) transfer of

energy to the receiver shown as box, (c) external force as a source of the

plane wave. Solid vertical lines show equilibrium position of the balls.
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Fig. 2. Momentum density arising from stress and movement of the

medium.
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