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a b s t r a c t

In multi-band and inter-metallic materials superconductivity can be destroyed by applying external

pressure in these systems. In many cases the critical temperature is driven continuously to zero, the

superconducting to normal transition being associated with a superconducting quantum critical point

(SQCP). In this paper we propose a model for this type of SQCP based on the increase of hybridization as

pressure is applied in the material. We study a two-band superconductor with hybridization V between

these bands. We use a BCS approximation and include both inter- and intra-band attractive interactions.

We show that for negligible inter-band interactions, as hybridization increases there is a second order

phase transition from a superconductor to a normal state at zero temperature at a critical value of the

hybridization Vc . This SQCP can be reached by pressure, since this external parameter controls

hybridization in the system. We also find discontinuous transitions at zero temperature and the

appearance of a gapless superconducting (GS) phase in a certain range of hybridization in the case of

inter-band interactions being dominant.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The study of asymmetric superconductivity, i.e., of super-
conductivity in systems with mismatched Fermi surfaces, has
raised a lot of interest over the last years [1]. This in part is due to
the relevance of this problem for many different areas in physics.
Such a problem arises in cold atom systems with superfluid
phases, color superconductivity in the core of neutron stars and
condensed matter physics. Furthermore this problem is closely
related to inhomogeneous superconductivity, as FFLO phases,
since these are possible ground states for asymmetric systems. In
condensed matter systems as inter-metallic materials there is
natural mismatch in Fermi surfaces due to different bands of
electrons occurring at the Fermi surface with different Fermi
wave-vectors [2]. Then, even in the absence of external magnetic
fields, one has to consider the possibility of inhomogeneous
superconductivity or other types of exotic ground states as gapless
superconducting (GS) phases. In this work we study asymmetric
superconductivity in a two-component system with attractive
interactions among the same and different components. This
model is specially suited to describe two bands inter-metallic
compounds [2]. For completeness we take into account hybridiza-
tion among the different components, such that only the total
number of particles is conserved.

In condensed matter, multi-band superconducting (SC) sys-
tems are susceptible to external pressure and in many cases this
drives them to the normal metallic state through a super-
conducting quantum critical point (SQCP). There are few mechan-
isms that can produce this type of quantum phase transition. The
most well known is through magnetic impurities [3], but there is
no reason to expect that this should be important in systems
which are brought to the normal state by external pressure. Here
we propose an alternative mechanism which is due to the increase
of hybridization caused by applying external pressure. In
condensed matter, multi-band systems, pressure modifies the
overlap of the wave-functions and consequently varies their
hybridization. In this paper we study the different types of zero
temperature superconductor to normal metal phase transitions
that can occur in a multi-band system as hybridization (pressure)
increases. We find that this transition can be discontinuous, but in
the case of predominant inter-band interactions the supercon-
ductor–normal phase transition is of second order and occurs
through a SQCP.

2. Model and formalism

We consider a model with two types of quasi-particles, a and b,
with an attractive inter-band interaction [4] g, an attractive intra-
band interaction U and a hybridization term V that mixes different
quasi-particles states [2]. This one-body mixing term V can be
tuned by external parameters such as pressure, permitting the
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exploration of the phase diagram and quantum phase transitions
of the model. The Hamiltonian is given by

H ¼
X
ks
ea

kayksaks þ
X
ks
eb

kbyksbks þ g
X
kk0s

ayk0sby
�k0�sb�k�saks

þ U
X
kk0s

byk0sby
�k0�sb�k�sbks þ

X
ks

Vkða
y

k0sbks þ byksaksÞ ð1Þ

where ayks and byks are creation operators for the light a and the
heavy b quasi-particles, respectively. The dispersion relations ea

k ¼

k2 � 1 and eb
k ¼ ak2 � b with the ratio between effective masses is

taken as a ¼ ðma=mbÞ.
The V-term is responsible for the transmutation among the

quasi-particles. In metallic systems, as transition metals [5], inter-
metallic compounds and heavy fermions [6], it stems from the
mixing of the wave-functions of the quasi-particles through the
crystalline potential. In the quark problem, it is the weak
interaction that allows the transformation between up and
down-quarks and gives rise to the mixing term [1,7,8]. For a
system of cold fermionic atoms in an optical lattice, with two
atomic states (a and b), the V-term is due to Raman transitions
with an effective Rabi frequency which is directly proportional to
V [9]. Thus, the hybridization term is added to take into account
these effects that allow for a quasi-particle (a or b) transform into
one another, so that only the total number of particles (aþ b) is
conserved. The physical source of the V-term is different for each
of the systems, as described previously. In the metallic case, which
is our principal interest here, hybridization can be easily
controlled by applied pressure that varies the overlap between
the atomic wave-functions. It provides this way a very useful
control parameter that can be changed externally, allowing to
probe experimentally the phase diagram of these materials.

Since we know the form of the Hamiltonian that we want to
study, we can, respectively, write the superconducting order
parameters, asymmetrical and symmetrical of the system, such as
Dab ¼ �g

P
ks/b�k�s; aksS and D ¼ �U

P
ks/b�k�s; bksS, respec-

tively.
In order to obtain the spectrum of excitations of Eq. (1) within

the mean-field approach, we use the equation of motion method
to calculate standard and anomalous Greens functions [10].
Excitonic types of correlations that just renormalize the hybridi-
zation [11] have been discarded. For the purpose of obtaining the
order parameters, the anomalous Greens function is necessary to
be calculated, //aks; b�k�sSS and //bks; b�k�sSS. When we
write the equation of motion for these Greens functions, new
Greens functions are generated [10]. Some of these are of higher
order as they contain a larger number of creation and annihilation
operators than just the two of the initial Greens functions.
For these, we apply a BCS type of decoupling [10] to reduce them
to the order of the original propagators. Finally, writing
the equations of motion for the new Greens functions, we obtain
a closed system of equations that can be solved as we did
before [2].

From the discontinuity of the Greens functions on the real axis
we can obtain the anomalous correlation function characterizing
the superconducting state. For the frequency of these excitations

to vanish, it is required that ½ea
ke

b
k � ðV

2 �D2
abÞ�

2 þD2ea2
k ¼ 0. This

can occur by tuning the hybridization parameter, such that V ¼

Dab in which case gapless excitations appear at k ¼ ka
F

where ea
k ¼ 0. Without this fine tuning there are no gapless

modes. Yet this does not occur if the symmetric interaction is
zero, because in that case the frequency of excitations could

vanish if ea
ke

b
k � V2 �D2

abÞ ¼ 0
�

, we will see the effects of this

behavior in the next section of this paper. For symmetry reasons,
we obtain the energy of the excitations in the form
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffi
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pq
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The order parameters are determined by two coupled
equations which for finite temperature are given by

1

gr
¼
X2

j¼1

Z oD

�oD

de
2

ffiffiffiffiffiffiffiffiffi
BðeÞ

p ð�1ÞjFðeÞtanh
bojðeÞ

2

� �� �
ð4Þ

with

FðeÞ ¼
o2

j ðeÞ � g
2ðeÞ

2ojðeÞ

 !
ð5Þ

g2ðeÞ ¼ eþ ðae� bÞ

2

� �2

þ ðD2
ab � V2Þ

þ
DV

4
DV þ 4

eþ ðae� bÞ

2

� �� �
�

eþ ðae� bÞ

2
�
DV

2

� �2

ð6Þ

with ea
k ¼ e, eb

k ¼ aþ ðae� bÞ and
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with

CðeÞ ¼
a2o2

j ðeÞ � ðeþ b� aÞ2
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 !
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with ea
k ¼ ðeþ b� aÞ=a and eb

k ¼ e.
The right-hand sides of Eqs. (4) and (7) define the gap

functions f ðDab;DÞ and fbðDab;DÞ, respectively. The behavior of gap
function, free energy and phase diagrams for null temperature of
the system, will be graphically analyzed in the next section.

3. Results and discussions

3.1. Pure asymmetrical case ðD ¼ 0Þ at T ¼ 0

We will, at first, analyze the case with T ¼ 0. Considering the
case with only the inter-band term (asymmetrical superconduc-
tivity) we observe that, the Hamiltonian which describes the
model, we can get the thermodynamic properties of the system,
one of them is the energy, as follows.

In Fig. 1 we show the energy of the ground state as a function of
the order parameter for several values of the hybridization. We
neglect the intra-band interaction and take the inter-band term as
fixed while we vary the mixing V. These curves allow us to identify
three characteristic values of hybridization. Initially for V ¼ V1 we
notice the appearance of a minimum at the origin that coexists
with the absolute minimum associated with the superconducting
state. As hybridization increases, a first order phase transition at
V ¼ V2 occurs, for which the energies of the normal and
superconducting state are equal. Further increasing the
hybridization, the superconducting state remains as a metastable
state until V ¼ V3 where it stops being a minimum of the energy.
These values of V give rise to phase diagram that is shown in Fig. 2.

We clearly see in Fig. 2 the regions where the system presents
its different behaviors. As explained before, for values V4V3 the
system is in the normal state (N) of conductivity. For V2oVoV3
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