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a b s t r a c t

The nesting of the Fermi surfaces of an electron and a hole pocket separated by a nesting vector Q and

the interaction between electrons gives rise to itinerant antiferromagnetism. The order can gradually be

suppressed by mismatching the nesting and a quantum critical point is obtained as the N�eel

temperature tends to zero. We review our results on the specific heat, the quasi-particle linewidth, the

electrical resistivity, the amplitudes of de Haas–van Alphen oscillations and the dynamical spin

susceptibility.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Landau’s Fermi liquid (FL) theory has been successful in
describing the low energy properties of most normal metals.
Numerous U, Ce and Yb based heavy fermion systems [1–3]
display deviations from FL behavior, which manifest themselves
as, e.g., a logðTÞ-dependence in the specific heat over T, C=T , a
singular behavior at low T of the magnetic susceptibility, w, and a
power-law dependence of the resistivity, r, with an exponent
close to one. These deviations from FL are known as non-Fermi
liquid (NFL) behavior. The breakdown of the FL can be tuned by
alloying (chemical pressure), hydrostatic pressure or the magnetic
field. In most cases the systems are close to the onset of
antiferromagnetism (AF) and the NFL behavior is attributed to a
quantum critical point (QCP) [4–12].

Recently we studied the pre-critical region of a heavy electron
band with two parabolic pockets, one electron-like and the other
hole-like, separated by a wave vector Q using (i) a field-theoretical
multiplicative renormalization group (RG) approach [9] and (ii)
the Wilsonian RG that eliminate the fast degrees of freedom close
to an ultraviolet cutoff and rewrite the Hamiltonian in terms of
renormalized slow variables [12]. The interaction is the remaining
repulsion between heavy quasi-particles after the heavy particles
have been formed in the sense of a Fermi liquid and is assumed to

be weak. The interaction between the electrons induces itinerant
AF or charge density waves (CDW) due to the nesting of the Fermi
surfaces of the two pockets. For perfect nesting (electron–hole
symmetry) an arbitrarily small interaction is sufficient for a
ground state with long-range order. The degree of nesting is
controlled by the mismatch parameter, d ¼ 1

2jkF1 � kF2jvF [kF1 (kF2)
is the Fermi momentum of the electron (hole) pocket]. In this way
the ordering temperature can be tuned to zero, leading to a QCP.

In this paper we review our main results. In the paramagnetic
phase the effective mass, m� (specific heat over T, C=T) and the
magnetic susceptibility increase logarithmically as T is lowered
and diverge at the critical point signaling the breakdown of the FL
[9,12]. There is a crossover from the �lnðTÞ dependence of C=T to
constant g as T is lowered if the QCP is not perfectly tuned, in
agreement with experiments on numerous systems. The quasi-
particle linewidth shows a crossover from NFL (�T) to FL (�T2)
behavior with increasing nesting mismatch and decreasing
temperature [13]. The electrical resistivity [14], the dynamical
susceptibility [15] and the amplitudes of the de Haas–van Alphen
oscillations [16] have also been studied.

The response function to superconductivity diverges as TN is
approached [17], but the dominating correlations are AF. NFL
behavior, AF order and superconductivity in the neighborhood of a
QCP have been observed in CePd2Si2 and CeIn3 under pressure
[18]. We have also investigated the renormalization of the
electron–phonon coupling, the softening of the phonon with
wave vector Q and the consequences of this softening on the
thermal expansion [19].
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2. Two-pocket model

The model consists of two pockets, one electron-like and the
other one hole-like, separated by a wavevector Q. The kinetic
energy of the carriers is given by [9,12]

H0 ¼
X
ks

e1ðkÞc
y

1ksc1ks þ e2ðkÞc
y

2ksc2ks

h i
; ð1Þ

where k is measured from the center of each pocket, and assumed
to be small compared to the nesting vector Q. Here e1ðkÞ ¼
vF ðk� kF1Þ and e2ðkÞ ¼ vF ðkF2 � kÞ, and for simplicity we assume
that the Fermi velocity is the same for both pockets.

A strong interaction between electrons gives rise to heavy
fermion bands. In the spirit of the FL theory, there are weak
remaining interactions between the heavy quasi-particles after
the heavy particles are formed. The heavy electron bands are
described by Eq. (1) and the weak interactions between quasi-
particles are given by [9,12]

H12 ¼ V
X

kk0qss0
cy1kþqsc1kscy2k0�qs0c2k0s0

þ U
X

kk0qss0
cy1kþqscy2k0�qs0c1ks0c2k0s: ð2Þ

Here V and U represent the interaction strength for small
(jqj5jQ j) and large (of the order of Q ) momentum transfer
between the pockets, respectively. The limit of the Hubbard model
is obtained by choosing V ¼ U.

The leading order corrections to the vertex are the bubble
diagrams of the zero-sound type (antiparallel propagator lines),
which are logarithmic in the external energy o. Assuming that
o is small compared to the cutoff energy D, and that the density of
states for electrons and holes is constant, rF , we have

~V ¼
V

1� rFVx
; 2 ~U � ~V ¼

ð2U � VÞ

1þ rF ð2U � VÞx
; ð3Þ

where x ¼ ln½D=ðjoj þ 2T þ dÞ� [12]. A divergent vertex indicates
strong coupling and signals an instability [9,12].

Within the logarithmic approximation the linear response to a
staggered magnetic field, wSðQ ;oÞ, and to a CDW, wcðQ ;oÞ, are
given by [9]

wSðQ ;oÞ ¼ 2xrF
~V=V ;

wcðQ ;oÞ ¼ 2xrF ð2
~U � ~V Þ=ð2U � VÞ: ð4Þ

Hence, if V40 a spin density wave is possible with a N�eel

temperature TN ¼
1
2 Dexp½�ðrFVÞ�1

� � 1
2d, and if 2UoV a CDW can

be formed at Tc ¼
1
2 Dexpf�½rF ðV � 2UÞ��1g � 1

2d. The condition for

a QCP is TN ¼ 0 or Tc ¼ 0, and if TNo0 and Tco0 long-range order
has not developed. Thus, for sufficiently large Fermi surface
mismatch the renormalization does not lead to an instability [12].
The QCP is an unstable fixed point and can only be reached by
perfectly tuning the system [9].

In the disordered phase the g-coefficient of the specific heat is
given by the effective thermal mass [9,12]

m�ðTÞ

m
¼

g
g0

¼ 1þ
xr2

F

4
½3V ~V þ ð2U � VÞð2 ~U � ~V Þ�; ð5Þ

where g0 refers to the non-interacting system. Here we kept only
the leading logarithmic contributions, and x is to be taken with
o ¼ 0.

The T-dependence of C=T as a function of lnðTÞ is shown in
Fig. 1. Here d0 ¼ 0:07 corresponds approximately to the critical
mismatch. For the tuned QCP, C=T increases logarithmically as
T is lowered and diverges at the critical point signaling the
breakdown of the Fermi liquid [9,12]. If d4d0 there is a crossover

from the logarithmic dependence (NFL) to a constant C=T (FL) as T

is lowered [13].

3. Quasi-particle linewidth

In an FL the damping of the quasi-particles is proportional to
T2, while the nesting condition changes this behavior to a quasi-
linear dependence in T. The linewidth G is calculated following a
procedure outlined by Virosztek and Ruvalds [20] in the context of
high-Tc superconductivity. In the disordered phase G is given by
the imaginary part of the electron self-energy, which can be
expressed as a convolution of a staggered susceptibility wS

00ðo=2TÞ

with a fermion Green’s function [13],

GNFLðo; TÞ ¼
1

2
T

Z
dx cothðxÞ � tanh x�

o
2T

� �h i
� wS

00ðxÞ½3j ~V j2 þ j2 ~U � ~V j2�rF ; ð6Þ

wS
00ðo=2TÞ �

rF

2
Imc

1

2
þ
GNFL

2pT
þ i

o� 2ðd� d0Þ

4pT

� �

þ
rF

2
Imc

1

2
þ
GNFL

2pT
þ i

oþ 2ðd� d0Þ

4pT

� �
; ð7Þ

where Imc is the imaginary part of the digamma function, o is
the external frequency, and d0 is the nesting mismatch corre-
sponding to the QCP. The frequency in the vertices is 2Tjxj þ joj=2
and we use the analytic continuation of the vertex functions, i.e.
ip=2 is added to x. The frequency of GNFL in Imc is 2Tjxj. The self-
consistent solution of Eqs. (6) and (7) yields the quasi-particle NFL
linewidth as a function of o and T [13].

There is also a FL contribution to the quasi-particle linewidth
given by [13]

GFLðo; TÞ ¼
p
8
½o2 þ ðpTÞ2�½3V2 þ ð2U � V2Þ�r3

F ; ð8Þ

which is added to FNFL assuming that Matthiessen’s rule is valid.
The vertices in GFL are not dressed, since this contribution does
not arise from the nesting condition.

The o and T dependence of the self-consistent GNFL can be
understood from some limiting cases [13]. First, consider the
perfectly tuned QCP, i.e. d ¼ d0, set o ¼ 0 and neglect GNFL in the
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Fig. 1. Enhancement of the thermal mass as a function of lnðTÞ for

VrF ¼ UrF ¼ 0:2, D ¼ 10, and several mismatch parameters d. d0 � 0:07 is

approximately the critical mismatch. Note the crossover from NFL to FL for

d4d0 as T is lowered.
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