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a b s t r a c t

The dynamic spin susceptibility wðq;oÞ, which is related to the inelastic neutron scattering cross-

section, gives important information about the low energy excitations of the systems. The spectral

density distribution function (SDF) of the neutron scattering is directly proportional to the imaginary

part of the wðq;oÞ. Attempt is made in the present communication to calculate the longitudinal spin

susceptibility for heavy fermion systems (HFS) to study resonance peaks at correlation temperature ðTNÞ

and Kondo temperature ðTK Þ. The model Hamiltonian consists of c–f electron exchange term and

Heisenberg type inter-site spin–spin correlation in a mean-field approximation, besides the terms

containing the conduction electron and f-electron contributions in presence of the hybridization

between them in the Hamiltonian. The two particle Green functions are calculated using the equations

of motion by method of Zubarev’s technique. The microscopic model calculation shows two resonance

peaks, one at Kondo excitation energy and another at correlation energy exhibiting the excellent

interplay between them for different model parameters.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The ground state of Kondo atom is a non-magnetic singlet state
in case of a single impurity [1], while there is a strong competition
between the Kondo effect and the magnetic ordering in the heavy
fermion compounds [2]. Thus some Cerium (Ce) Kondo com-
pounds are, at low temperature, either non-magnetic, as in case of
single impurity, or magnetically ordered [3,4]. The well-known
‘‘Doniach diagram’’ gives a qualitative description of the competi-
tion between the Kondo effect and the magnetic ordering as a
function of the exchange integral JK (with JKo0). Kondo tempera-
ture TK increases experimentally with jJK j, while the real ordering
temperature TN increases initially with increasing jJK j, then passes
through a maximum and tends to zero at a critical value. Such
behaviour of TN has been observed experimentally in CePd2Al3,
CeAl2, CePd2Si2 and CeRb2Si2 [5]. The description of phase
diagram by Doniach to explain the above effects appears to be
too simplified for the really observed Kondo temperature TK . In a
paper by Iglesias and coworkers [6,7] have taken the effect of anti-
ferromagnetic correlation in the non-magnetic phase. Moreover,
the occurrence of short range magnetic correlation has been

observed experimentally by neutron diffraction experiment at low
temperatures in CeCu6 and CeRu2Si2 [8,9]. It has been found that
incommensurate and anti-ferromagnetic correlations develop at
low temperature bellow TN ’ 60270 K in CeRu2Si2 [8,9] or TN ’

10 K in CeCu6 [8] which are clearly larger than Kondo temperature
TK ’ 14223 K in CeRu2Si2 or TK ’ 5 K in CeCu6.

The dynamic spin susceptibility wðoÞ, which is related to the
inelastic neutron scattering (INS) cross-section, gives important
information about the low energy excitation of the system. In this
paper, we apply random phase approximation (RPA) theory [10] to
calculate dynamical longitudinal magnetic susceptibility of con-
duction electron in the Kondo model. The magnetic excitation in
heavy fermion systems (HFS) provides valuable information for
the nature HF states in Ce and uranium compounds [10]. Aeppli
et al. [11] performed neutron scattering measurements on CeCu6

which is a typical HF compound with an exceptionally large
specific heat constant at low temperatures [12,13]. The cross-
section of the inelastic scattering for kBThh_o is proportional to
Imwðq;oÞ, where w is the dynamical spin susceptibility. Some
authors [14–18] have calculated wðq;oÞ in Anderson model
applying 1=Nf method, where Nf is degeneracy of 4f-electrons.
In above model, they could explain the Kondo peak but could not
explain the f-electron correlation interaction peaks. In their
calculation, they assumed f–f Coulomb interaction U to be
infinity.
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In the present communication, we attempt to study the
interplay between the Kondo coupling and short range f–f
correlations within the mean-field approximation. Therefore, we
investigate the momentum and frequency dependent dynamical
spin susceptibility wðq;oÞ for HFS. In particular, we compare the
formation of the resonant spin excitations (resonance peaks) with
the resonance peak in the inelastic neutron scattering experiment.
For this purpose, a model Hamiltonian is formulated in Section 2.
The mean-field Kondo parameter ðlÞ, magnetic correlation para-
meter ðGÞ and the chemical potential ðmÞ are calculated by
minimizing the total energy of the system as described in Section 3.
The calculation of dynamic spin susceptibility wðq;oÞ is presented
in Section 4. Finally, the results and discussion are presented in
Section 5.

2. Formalism

Iglesias and coworkers [6,7] have considered the Kondo-lattice
model including nearest neighbour magnetic exchange interac-
tion and studied both the Kondo state and inter-site magnetic
correlations using a mean-field approximation. Later Baral et al.
[19] have considered the similar model and reported the interplay
of Kondo effect and superconductivity in HFS. We consider the
following Hamiltonian [6,19] to describe the Kondo lattice with
short-range magnetic correlation:

H ¼
X
k;s
�kcyk;sck;s þ E0

X
i;s

f yi;sf i;s � JH

X
i;j

~
Sf

i �
~
Sf

j � JK

X
i

~sc
i �
~
Sf

i (1)

where ck;sðc
y

k;sÞ and f i;sðf
y

i;sÞ are the annihilation (creation)
operators of conduction and f-electrons for wave vector ~k and
spin s at site i, respectively. ~sc

i and
~
Sf

i are the spin operators for
conduction and f-electrons. In Eq. (1), the third term describes the
Heisenberg interaction between neighbouring f-magnetic mo-
ments and under the condition JH40 for a ferromagnetic coupling
and JHo0 for an anti-ferromagnetic coupling. The last term is the
c–f exchange term for JK ðo0Þ being the Kondo coupling. We treat
the Hamiltonian in Eq. (1) in a ‘‘mean-field’’ approximation to find
simultaneously the Kondo effect and the anti-ferromagnetic
correlation. The two mean-field parameters are: (i) l ¼ hf yi;sci;si

which describes the formation of Kondo singlet and (ii) G ¼
hf yi;sf i;si accounts for magnetic correlation between neighbouring
localized spins. Within the mean-field approximation the Hamil-
tonian Eq. (1) can be written after Fourier transformation as

H ¼
X
k;s
�kcyk;sck;s þ

X
k;s
�f ðkÞf

y

k;sf k;s þ VðlÞ
X
k;s
ðcyk;sf k;s þ f yk;sck;sÞ

� 2JKl
2
� ZJHG

2 (2)

where effective f-level �f ðkÞ ¼ E0 þ B�k with B ¼ 2ZJHG=W and
effective c–f hybridization VðlÞ ¼ JKl and W is the band width of
conduction band, with the nearest neighbour sites Z. In Eq. (1),
f-band is taken as dispersion-less with constant density of states.
Within this mean-field interaction, the magnetic interaction JH

leads to a finite band width for the f-states, while the Kondo
interaction JK produces a hybridization between conduction band
of width W and the f-band of effective width �f ðkÞ.

3. Expressions for magnetic correlation G and Kondo singlet l

In order to diagonalize the mean-field Hamiltonian in Eq. (2)
and to calculate Kondo singlet parameter l and correlation
parameter G, we define two Green functions for the conduction
electrons as

G1ðk;oÞ ¼ hhck;s; c
y

k;siio (3)

G2ðk;oÞ ¼ hhf k;s; c
y

k;siio (4)

These Green functions are calculated by equations of motion by
Zubarev’s technique [20] and expressed as closed form as

G1ðk;oÞ ¼
ðo� �f ðkÞÞ

2pjDðoÞj
(5)

G2ðk;oÞ ¼
VðlÞ

2pjDðoÞj
(6)

where

jDðoÞj ¼ ðo� �kÞðo� �f ðkÞÞ � V2
ðlÞ (7)

Equating jDðoÞj ¼ 0, the two quasi-particle bands are found to
be

o1;2ðkÞ ¼
1
2½�k � mþ �f ðkÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�k � m� �f ðkÞÞ

2
þ 4V2

ðlÞ
q

� (8)

The position of f-level E0 and chemical potential m are
determined self-consistently in order to satisfy the following
conditions:
X
k;s
hf yk;sf k;si ¼ 1 (9)

X
k;s
hcyk;sck;si ¼ 1 (10)

Thus within this mean-field approach, we deal with two quasi-
particle bands of energies oaðkÞ for a ¼ 1;2 given in Eq. (8) and, by
using the two conditions in Eqs. (9) and (10), the total energy of
system is given by

E ¼ 2
X
k;a

oaðkÞf ðboaðkÞÞ � ZJHG
2
� 2JKl

2 (11)

where f ðboaÞ describes the Fermi–Dirac distribution function. The
temperature dependent mean-field parameters lðTÞ and GðTÞ are
determined by minimizing the total energy E. The minimization of
the total energy for lðTÞ (i.e., @E=@l ¼ 0) gives

1 ¼
X

k

JK

PðkÞ
½Kðbo1ðkÞÞ � Kðbo2ðkÞÞ� (12)

The minimization of the total energy for GðTÞ (i.e., @E=@G ¼ 0)
gives

1 ¼
1

G

X
k

�k

WPðkÞ
½ðo1ðkÞ � B�k � E0ÞKðbo2ðkÞÞ

� ðo2ðkÞ � B�k � E0ÞKðbo1ðkÞÞ� (13)

We know that the chemical potential mðTÞ is the free energy of
conduction electrons per particle. The minimization of total
energy w.r.t. chemical potential mðTÞ at finite temperature, (i.e.,
@E=@m ¼ 0) we get the temperature dependent of chemical
potential m

0 ¼
X

k

1

PðkÞ
½ðo2ðkÞ � B�k � E0ÞKðbo2ðkÞÞ

� ðo1ðkÞ � B�k � E0ÞKðbo1ðkÞÞ� (14)

where the functions KðboaðkÞÞ for a ¼ 1;2 are given by

KðboaðkÞÞ ¼
1þ ð1� boaðkÞÞ expðboaðkÞÞ

½expðboaðkÞÞ þ 1�2
(15)

and

PðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�k � m� �f ðkÞÞ

2
þ 4V2

ðlÞ
q

(16)

Then, the temperature dependence of GðTÞ, lðTÞ and mðTÞ can be
calculated self-consistently along with conditions in Eqs. (9)
and (10). When l equals to zero, the correlation function ðsc

i � S
f
j Þ
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