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Abstract

In this paper we study adiabatic transformations in a model of first-order phase transformations made of superposition of bistable

units. A differential equation with hysteresis operators is derived and how to compute numerically the TðHÞ trajectories is discussed. The

numerical method is applied to an idealized phase transformation displaying an instability. We discuss the differences of the temperature

change between the controlled magnetic field case and the controlled phase transformation case.
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1. Introduction

The recent developments of magnetic materials with
giant magneto-caloric effect (GMCE) for magnetic refrig-
eration [1] require a better understanding of their thermo-
dynamic aspects. GMCE materials display a first-order
magneto-structural phase transformation with hysteresis
that can be approximately described as rate independent
and in which the entropy change achievable by the
application of the magnetic field and the entropy produced
by the hysteresis irreversibility are both present.

Here we face the problem of first-order magneto-
structural phase transformations with hysteresis from the
viewpoint of hysteresis model based on the superposition
of bistable units. The two states of the units correspond to
one of the two stable thermodynamic phases 0 or 1 (see
Fig. 1) and the driving force of the switching is the
difference between the Gibbs free energies g0 and g1 of the
pure ideal phases [2]. The expressions for the entropy
change and the entropy production rate are derived by

using the equivalence between the superposition and the
thermodynamic approaches with internal variables [3].
In this paper we study this model in the case of adiabatic

transformations for the magnetic body. This is a rather
interesting situation for several reasons. (i) Since the model
is defined with H and T as controlled variables, in order to
obtain adiabatic transformations one has to include
explicitly in the description the role of the part of the
system (phonons, electrons, etc.) contributing to the
specific heat. This is valid if we assume thermal equilibrium
between magnetic and structural parts. (ii) When the
magnetic field H is varied, the adiabatic temperature
change is given by the solution of a differential equation
containing hysteresis operators of Preisach type. This kind
of equation has its own interest for the mathematical
aspects it involves. (iii) To go deeper into the physics of the
phase transformation process, we envisage the possibility
of predicting instabilities in the phase transformation that
occurs under adiabatic conditions, but not under isother-
mal ones. These model conditions may be realized in real
materials.
We derive a numerical scheme for the integration of the

differential equation for the adiabatic transformation and
we apply it to a limit case in which the balance between the
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entropy production due to hysteresis and the entropy
change is such that, after a threshold, the transformation is
self-sustained without any change of the external magnetic
field. We show that the numerical scheme proposed
provides a solution in which the magnetic field H is
recoiling back, then representing the trajectory TðHÞ with
controlled transformation speed. The result is that the
controlled magnetic field trajectory would display an
instability at a critical field value and would result in a
different temperature of the final state because of the
kinetics involved. The instability we predict by the model
may be found in adiabatic transformations of magnetic
alloys with AF–F phase transformations [4].

2. The model

The model represents a phase transformation with
hysteresis. It is a superposition of bistable units, of Preisach
type, with states 0 and 1 (see Fig. 1) corresponding to two
thermodynamic phases of a magnetic alloy (for example,
0 ¼ anti-ferromagnetic state, 1 ¼ ferromagnetic state). The
input of the unit is the difference in the Gibbs free energies
of the two pure phases g0ðH;TÞ and g1ðH ;TÞ, denoted by
the symbol Z:

Z ¼
g0 � g1

2
(1)

and depending on the two intensive variables H and T.
The superposition of the units is taken with weight

function pðgc; guÞ. The state of the system is given by the
same rules of the Preisach model of hysteresis. The regions
of the plane ðgc; guÞ in the 0 or 1 state depends on the time
history of ZðtÞ and are separated by a borderline function
bðgcÞ which is determined by enforcing the inequality
jbðgcÞ � ZðtÞjpgc at each instant of time (see Ref. [5] for a
detailed discussion of this evolution rule).

We assume that the non-equilibrium Gibbs free energy ĝ

of the system is a superposition of bistable contributions [5]:

ĝ ¼ Aþ

Z 1
0

dgc

Z bðgcÞ

�1

ðgu � ZÞpðgc; guÞdgu

"

�

Z 1
bðgcÞ

ðgu � ZÞpðgc; guÞdgu

#
, ð2Þ

where A ¼ ðg0 þ g1Þ=2 and we have used the equilibrium-
specific Gibbs free energies of the pure phases g0 and g1 per
unit mass. Then the out-of-equilibrium thermodynamics of
the system is derived consequently by making use of known
results for the thermodynamics with internal variables [3].
We take a distribution pðgc; guÞ that does not depend on
H and T, then the borderline bðgcÞ takes the role of the
internal state variable. Using the results of Ref. [3] we
obtain:

(1) The phase fraction per unit mass X̂ of phase 1:

X̂ ¼

Z 1
0

dgc

Z bðgcÞ

�1

pðgc; guÞdgu. (3)

(2) The extensive variables: the magnetization M̂ and the
specific entropy ŝ (both per unit mass):

m0M̂ ¼ �
qĝ

qH

����
T ;bðgcÞ

, (4)

ŝ ¼ �
qĝ

qT

����
H ;bðgcÞ

, (5)

where the internal variable, the function bðgcÞ, is kept
constant.

(3) The rate of entropy production diŝ=dt:

T
diŝ

dt
¼ �

qĝ

qt

����
H;T

, (6)

where the variation of the Gibbs free energy in time is
due to a variation dbðgcÞ of the internal state under
constant H and T. By the fact that the system is not in
the equilibrium state, every transformation with a
change in the state line corresponds to an internal
generation of entropy.

The previous expressions are easily computed giving

M̂ ¼ X̂M1 þ ð1� X̂ ÞM0 ¼ DMX̂ þM0, (7)

ŝ ¼ X̂ s1 þ ð1� X̂ Þs0 ¼ DsX̂ þ s0, (8)

where m0M1 ¼ �qg1=qH, m0M0 ¼ �qg0=qH,
s1 ¼ �qg1=qT , s0 ¼ �qg0=qT , DM ¼M1 �M0, Ds ¼ s1 �

s0 and X̂ is the phase fraction given by the Preisach model
expression, Eq. (3), with ZðH ;TÞ as input. The rate of
entropy production diŝ=dt results:

T
diŝ

dt
¼ 2

Z 1
0

½Z � bðgcÞ�pðgc; bðgcÞÞ
qb

qt
dgc (9)

which is a definite positive quantity.

3. Adiabatic transformations

In adiabatic transformations the system is isolated
and its temperature T may change. The variation of the
entropy of the body ŝ is given by the entropy balance
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Fig. 1. Bistable loop for the first-order phase transformation.
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